scholarly journals A high-performance oxygen evolution catalyst in neutral-pH for sunlight-driven CO2 reduction

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Li Qin Zhou ◽  
Chen Ling ◽  
Hui Zhou ◽  
Xiang Wang ◽  
Joseph Liao ◽  
...  

Abstract The efficiency of sunlight-driven reduction of carbon dioxide (CO2), a process mimicking the photosynthesis in nature that integrates the light harvester and electrolysis cell to convert CO2 into valuable chemicals, is greatly limited by the sluggish kinetics of oxygen evolution in pH-neutral conditions. Current non-noble metal oxide catalysts developed to drive oxygen evolution in alkaline solution have poor performance in neutral solutions. Here we report a highly active and stable oxygen evolution catalyst in neutral pH, Brownmillerite Sr2GaCoO5, with the specific activity about one order of magnitude higher than that of widely used iridium oxide catalyst. Using Sr2GaCoO5 to catalyze oxygen evolution, the integrated CO2 reduction achieves the average solar-to-CO efficiency of 13.9% with no appreciable performance degradation in 19 h of operation. Our results not only set a record for the efficiency in sunlight-driven CO2 reduction, but open new opportunities towards the realization of practical CO2 reduction systems.

Author(s):  
Shuya Zhao ◽  
Yurui Xue ◽  
Zhongqiang Wang ◽  
Zhiqiang Zheng ◽  
Xiaoyu Luan ◽  
...  

Developing highly active, stable and low-cost electrocatalysts capable of an efficient oxygen evolution reaction (OER) is urgent and challenging.


Author(s):  
Yoo Sei Park ◽  
Jooyoung Lee ◽  
Myeong-Je Jang ◽  
Juchan Yang ◽  
Jae Hoon Jeong ◽  
...  

Seawater electrolysis is a promising technology for the production of hydrogen energy and seawater desalination. To produce hydrogen energy through seawater electrolysis, highly active electrocatalysts for the oxygen evolution reaction...


2016 ◽  
Vol 4 (2) ◽  
pp. 620-631 ◽  
Author(s):  
Islam M. Mosa ◽  
Sourav Biswas ◽  
Abdelhamid M. El-Sawy ◽  
Venkatesh Botu ◽  
Curtis Guild ◽  
...  

Understanding the origin of manganese oxide activity for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key step towards rationally designing of highly active catalysts capable of competing with the widely used, state-of-art noble metal catalysts.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaili Zhang ◽  
Xinhui Xia ◽  
Shengjue Deng ◽  
Yu Zhong ◽  
Dong Xie ◽  
...  

Abstract Controllable synthesis of highly active micro/nanostructured metal electrocatalysts for oxygen evolution reaction (OER) is a particularly significant and challenging target. Herein, we report a 3D porous sponge-like Ni material, prepared by a facile hydrothermal method and consisting of cross-linked micro/nanofibers, as an integrated binder-free OER electrocatalyst. To further enhance the electrocatalytic performance, an N-doping strategy is applied to obtain N-doped sponge Ni (N-SN) for the first time, via NH3 annealing. Due to the combination of the unique conductive sponge structure and N doping, the as-obtained N-SN material shows improved conductivity and a higher number of active sites, resulting in enhanced OER performance and excellent stability. Remarkably, N-SN exhibits a low overpotential of 365 mV at 100 mA cm−2 and an extremely small Tafel slope of 33 mV dec−1, as well as superior long-term stability, outperforming unmodified sponge Ni. Importantly, the combination of X-ray photoelectron spectroscopy and near-edge X-ray adsorption fine structure analyses shows that γ-NiOOH is the surface-active phase for OER. Therefore, the combination of conductive sponge structure and N-doping modification opens a new avenue for fabricating new types of high-performance electrodes with application in electrochemical energy conversion devices.


2019 ◽  
Author(s):  
Denis Kuznetsov ◽  
Jiayu Peng ◽  
Livia Giordano ◽  
Yuriy Román-Leshkov ◽  
Yang Shao-Horn

In this study, we employ the strategy of substitution with more electronegative/acidic A-site ions in the cobalt perovskites to alter O 2p-band center, surface hydroxide affinity, and oxygen evolution reaction (OER) activity and stability in the basic electrolyte. Galvanostatically charged Bi<sub>0.2</sub>Sr<sub>0.8</sub>CoO<sub>3-δ</sub> (δ close to zero) was shown to exhibit record OER specific activity exceeding not only La<sub>x</sub>Sr<sub>1-x</sub>CoO<sub>3-δ</sub> but also charged SrCoO<sub>3-δ</sub> (δ close to zero), one of the most active oxide OER catalysts reported so far. The enhanced OER activity of charged Bi<sub>0.2</sub>Sr<sub>0.8</sub>CoO<sub>3-δ</sub> can be attributed to greater hydroxide affinity facilitating the deprotonation of surface bound intermediates due to the presence of strong Lewis acidic A-site Bi<sup>3+</sup> ions, while the high stability can result from lowered O 2p-band center relative to the Fermi level. This work provides a novel example in the rational design of highly active oxide catalysts for OER by leveraging the inductive effect.


2016 ◽  
Vol 52 (32) ◽  
pp. 5546-5549 ◽  
Author(s):  
Xiang Liu ◽  
Shengsheng Cui ◽  
Manman Qian ◽  
Zijun Sun ◽  
Pingwu Du

A highly active copper oxide catalyst film is generated in situ from copper(ii) diamine complex for oxygen evolution reaction with high performance and excellent durability in alkaline solutions.


2019 ◽  
Author(s):  
Denis Kuznetsov ◽  
Jiayu Peng ◽  
Livia Giordano ◽  
Yuriy Román-Leshkov ◽  
Yang Shao-Horn

In this study, we employ the strategy of substitution with more electronegative/acidic A-site ions in the cobalt perovskites to alter O 2p-band center, surface hydroxide affinity, and oxygen evolution reaction (OER) activity and stability in the basic electrolyte. Galvanostatically charged Bi<sub>0.2</sub>Sr<sub>0.8</sub>CoO<sub>3-δ</sub> (δ close to zero) was shown to exhibit record OER specific activity exceeding not only La<sub>x</sub>Sr<sub>1-x</sub>CoO<sub>3-δ</sub> but also charged SrCoO<sub>3-δ</sub> (δ close to zero), one of the most active oxide OER catalysts reported so far. The enhanced OER activity of charged Bi<sub>0.2</sub>Sr<sub>0.8</sub>CoO<sub>3-δ</sub> can be attributed to greater hydroxide affinity facilitating the deprotonation of surface bound intermediates due to the presence of strong Lewis acidic A-site Bi<sup>3+</sup> ions, while the high stability can result from lowered O 2p-band center relative to the Fermi level. This work provides a novel example in the rational design of highly active oxide catalysts for OER by leveraging the inductive effect.


Nanoscale ◽  
2019 ◽  
Vol 11 (15) ◽  
pp. 7239-7246 ◽  
Author(s):  
Jun Di ◽  
Huiyuan Zhu ◽  
Jiexiang Xia ◽  
Jian Bao ◽  
Pengfei Zhang ◽  
...  

Highly active, low-cost, and durable electrocatalysts for the water oxidation reaction are pivotal in energy conversion and storage schemes.


Sign in / Sign up

Export Citation Format

Share Document