scholarly journals Redox-governed charge doping dictated by interfacial diffusion in two-dimensional materials

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Kwanghee Park ◽  
Haneul Kang ◽  
Seonghyun Koo ◽  
DaeEung Lee ◽  
Sunmin Ryu

Abstract Controlling extra charge carriers is pivotal in manipulating electronic, optical, and magnetic properties of various two-dimensional materials. Nonetheless, the ubiquitous hole doping of two-dimensional materials in the air and acids has been controversial in its mechanistic details. Here we show their common origin is an electrochemical reaction driven by redox couples of oxygen and water molecules. Using real-time photoluminescence imaging of WS2 and Raman spectroscopy of graphene, we capture molecular diffusion through the two-dimensional nanoscopic space between two-dimensional materials and hydrophilic substrates, and show that the latter accommodate water molecules also serving as a hydrating solvent. We also demonstrate that HCl-induced doping is governed by dissolved O2 and pH in accordance with the Nernst equation. The nanoscopic electrochemistry anatomized in this work sets an ambient limit to material properties, which is universal to not only 2D but also other forms of materials.

RSC Advances ◽  
2018 ◽  
Vol 8 (67) ◽  
pp. 38667-38672 ◽  
Author(s):  
Vuong Van Thanh ◽  
Nguyen Tuan Hung ◽  
Do Van Truong

Using first-principle density functional calculations, we investigate electromechanical properties of two-dimensional MX2 (M = Mo, W; X = S, Se, Te) monolayers with the 1H and 1T structures as a function of charge doping for both electron and hole doping.


2018 ◽  
Author(s):  
Penny Perlepe ◽  
Rodolphe Clérac ◽  
Itziar Oyarzabal ◽  
Corine Mathonière

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


ACS Nano ◽  
2021 ◽  
Vol 15 (4) ◽  
pp. 7155-7167
Author(s):  
Alireza Taghizadeh ◽  
Kristian S. Thygesen ◽  
Thomas G. Pedersen

Sign in / Sign up

Export Citation Format

Share Document