hole doping
Recently Published Documents


TOTAL DOCUMENTS

524
(FIVE YEARS 94)

H-INDEX

46
(FIVE YEARS 7)

Author(s):  
I. C. Lin ◽  
M. H. Lee ◽  
P. C. Wu ◽  
S. C. Lin ◽  
J. W. Chen ◽  
...  

Abstract Thin oxide films are of vast opportunities for modern electronics and can facilitate emergent phenomena by factors absent in the bulk counterparts, such as the ubiquitous epitaxial strain and interfacial charge doping. Here, we demonstrate the twisting of intended bulk-metallic phases in 10-unit-cell LaNiO3, PrNiO3, and NdNiO3 films on (001)-oriented SrTiO3 into distinct charge-lattice entangled states by epitaxial strains. Using atomically-resolved electron microscopy and spectroscopy, the interfacial electron doping into SrTiO3 in the conventional context of band alignments are discounted. Instead, spontaneously doped holes that are localized and at the order of 1013 cm-2 are atomically unraveled across all three heterointerfaces and associated with strain mitigations by the accompanied atomic intermixing with various ionic radii. The epitaxial strains also lead to condensations of monoclinic-C2/c lattice instabilities, which are hidden to the bulk phase diagram. The group-theoretical analysis of characteristic transition pathways unveils the strain resurrection of the hidden C2/c symmetry. While this strain-induced monoclinic phase in LaNiO3 remains metallic at room temperature, those in PrNiO3 and NdNiO3 turn out to be insulating. Such strain-induced monoclinic lattice instabilities and parasitic localized holes go beyond the classical elastic deformations of films upon epitaxial strains and hint on plausible hidden orders in versatile oxide heterostructures with unexpected properties, of which the exploration is only at the infancy and full of potentials.


Author(s):  
Shahnila Naseem ◽  
S. Faiza-Rubab ◽  
M. Zulfiqar ◽  
S. Nazir
Keyword(s):  

Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Yoshitaka Kawasugi ◽  
Hiroshi M. Yamamoto

The physics of quantum many-body systems have been studied using bulk correlated materials, and recently, moiré superlattices formed by atomic bilayers have appeared as a novel platform in which the carrier concentration and the band structures are highly tunable. In this brief review, we introduce an intermediate platform between those systems, namely, a band-filling- and bandwidth-tunable electric double-layer transistor based on a real organic Mott insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl. In the proximity of the bandwidth-control Mott transition at half filling, both electron and hole doping induced superconductivity (with almost identical transition temperatures) in the same sample. The normal state under electric double-layer doping exhibited non-Fermi liquid behaviors as in many correlated materials. The doping levels for the superconductivity and the non-Fermi liquid behaviors were highly doping-asymmetric. Model calculations based on the anisotropic triangular lattice explained many phenomena and the doping asymmetry, implying the importance of the noninteracting band structure (particularly the flat part of the band).


Author(s):  
Jared Omari Agora ◽  
Calford Otieno ◽  
P W O Nyawere ◽  
George S. Manyali

Abstract Doping superconductors are known to vary the superconducting transition temperature TC depending on the degree of holes or electrons introduced in a system. In this study, we report how pressure-induced hole doping influences the TC of GdBa2Cu3O7-x superconducting perovskite. The study was carried out in the framework of density functional theory (DFT) using the Quantum espresso code. Ultrasoft pseudopotential with generalized gradient approximation (GGA) and local density approximation (LDA) functional was used to calculate the ground state energy using the plane waves (PW). The stability criterion was satisfied from the calculated elastic constants. The BCS theory and the Mc Millan’s equation was used to calculate the TC of the material at different conditions of pressure. The underdoped regime where the holes were less than those at optimal doping was found to be below 20 GPa of doping pressure. Optimal doping where the material achieved the highest TC (max) ~ 20 GPa of the doping pressure. Beyond the pressure of ~20 GPa was the over doping regime where a decrease in TC was recorded. The highest calculated TC (max) was ~141.16 K. The results suggest that pressure of ~20 GPa gave rise to the highest TC in the study.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2365
Author(s):  
John M. Tranquada

Hole doping into a correlated antiferromagnet leads to topological stripe correlations, involving charge stripes that separate antiferromagnetic spin stripes of opposite phases. The topological spin stripe order causes the spin degrees of freedom within the charge stripes to feel a geometric frustration with their environment. In the case of cuprates, where the charge stripes have the character of a hole-doped two-leg spin ladder, with corresponding pairing correlations, anti-phase Josephson coupling across the spin stripes can lead to a pair-density-wave order in which the broken translation symmetry of the superconducting wave function is accommodated by pairs with finite momentum. This scenario is now experimentally verified by recently reported measurements on La2−xBaxCuO4 with x=1/8. While pair-density-wave order is not common as a cuprate ground state, it provides a basis for understanding the uniform d-wave order that is more typical in superconducting cuprates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sang Wook Han ◽  
Won Seok Yun ◽  
Hyesun Kim ◽  
Yanghee Kim ◽  
D.-H. Kim ◽  
...  

AbstractBeyond the general purpose of noble gas ion sputtering, which is to achieve functional defect engineering of two-dimensional (2D) materials, we herein report another positive effect of low-energy (100 eV) He+ ion irradiation: converting n-type MoS2 to p-type by electron capture through the migration of the topmost S atoms. The electron capture ability via He+ ion irradiation is valid for supported bilayer MoS2; however, it is limited at supported monolayer MoS2 because the charges on the underlying substrates transfer into the monolayer under the current condition for He+ ion irradiation. Our technique provides a stable and universal method for converting n-type 2D transition metal dichalcogenides (TMDs) into p-type semiconductors in a controlled fashion using low-energy He+ ion irradiation.


2021 ◽  
Author(s):  
◽  
Sebastian Sambale

<p>This thesis is motivated by the large variety of high-temperature superconductors that contain iron in the superconducting layer. This number has grown rapidly since the discovery in 2008 of the iron-pnictides (and chalcogenides), where iron and arsenic form the superconducting layer. Also of interest are the iron-cuprate hybrid materials, where one out of three copper atoms is replaced by iron. The aim is to understand the superconducting, magnetic and electronic properties of these materials in respect to their iron content. This thesis describes some of these properties for the iron-pnictide compounds of CeFeAsO₁₋xFx and AFe₂As₂ (A=Ba, Sr), and for the ironcuprate hybrids of FeSr₂YCu₂O₆₊y and FeSr₂Y₂₋xCexCu₂O₁₀₋y.  Here it has been found that CeFeAsO₁₋xFx follows a 3D fluctuation conductivity above the superconducting transition and the thermal activation energy is correlated to the critical current density within a two fluid-flux creep model below the superconducting transition. NMR measurements show that there is considerable charge disorder within the superconducting doping region. The AFe₂As₂ show a positive magnetoresistance, which could be interpreted through three-carrier transport. Superconducting samples of SrFe₂As₂ display a large enhancement in the magnetoresistance below the superconducting transition up to 1600 %, which is due to three-carrier transport through metallic and superconducting regions in an inhomogeneous state.  The superconducting properties of the iron-cuprate FeSr₂YCu₂O₆₊y in respect to the location of iron was studied under the influence of electron and hole doping and with additional magnetic impurities. FeSr₂Y₂₋xCexCu₂O₁₀₋y shows a disorder induced spin-glass state and strong localization depending on the doping.</p>


2021 ◽  
Vol 119 (20) ◽  
pp. 202103
Author(s):  
Liwen Sang ◽  
Masatomo Sumiya ◽  
Meiyong Liao ◽  
Yasuo Koide ◽  
Xuelin Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document