scholarly journals A neural network for information seeking

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
J. Kael White ◽  
Ethan S. Bromberg-Martin ◽  
Sarah R. Heilbronner ◽  
Kaining Zhang ◽  
Julia Pai ◽  
...  

AbstractHumans and other animals often show a strong desire to know the uncertain rewards their future has in store, even when they cannot use this information to influence the outcome. However, it is unknown how the brain predicts opportunities to gain information and motivates this information-seeking behavior. Here we show that neurons in a network of interconnected subregions of primate anterior cingulate cortex and basal ganglia predict the moment of gaining information about uncertain rewards. Spontaneous increases in their information prediction signals are followed by gaze shifts toward objects associated with resolving uncertainty, and pharmacologically disrupting this network reduces the motivation to seek information. These findings demonstrate a cortico-basal ganglia mechanism responsible for motivating actions to resolve uncertainty by seeking knowledge about the future.

2019 ◽  
Author(s):  
J. Kael White ◽  
Ethan S. Bromberg-Martin ◽  
Sarah R. Heilbronner ◽  
Kaining Zhang ◽  
Julia Pai ◽  
...  

ABSTRACTHumans and other animals often show a strong desire to know the uncertain rewards their future has in store, even when they cannot use this information to influence the outcome. However, it is unknown how the brain predicts opportunities to gain information and motivates this information seeking behavior. Here we show that neurons in a network of interconnected subregions of primate anterior cingulate cortex and basal ganglia predict the moment of gaining information about uncertain rewards. Spontaneous increases in their information prediction signals are followed by gaze shifts toward objects associated with resolving uncertainty, and pharmacologically disrupting this network reduces the motivation to seek information. These findings demonstrate a cortico-basal ganglia mechanism responsible for motivating actions to resolve uncertainty by seeking knowledge about the future.


2017 ◽  
Vol 8 (4) ◽  
pp. 43-54
Author(s):  
E.A. Varshaver

This article contains a review of research in the realm of neurophysiology of ethnicity. According to this body of research, there are zones of the brain which get active in response to demonstration of ethnic stimuli. Among these zones are amygdala, anterior cingulate cortex, fusiform face area and others. The article describes the research focused on each of these zones, discusses their weaknesses and projects further research on the crossroads of neurophysiology, cognitive science, psychology and sociology.


2006 ◽  
Vol 18 (4) ◽  
pp. 651-664 ◽  
Author(s):  
Markus Ullsperger ◽  
D. Yves von Cramon

The basal ganglia have been suggested to play a key role in performance monitoring and resulting behavioral adjustments. It is assumed that the integration of prefrontal and motor cortico—striato—thalamo—cortical circuits provides contextual information to the motor anterior cingulate cortex regions to enable their function in performance monitoring. So far, direct evidence is missing, however. We addressed the involvement of frontostriatal circuits in performance monitoring by collecting event-related brain potentials (ERPs) and behavioral data in nine patients with focal basal ganglia lesions and seven patients with lateral prefrontal cortex lesions while they performed a flanker task. In both patient groups, the amplitude of the error-related negativity was reduced, diminishing the difference to the ERPs on correct responses. Despite these electrophysiological abnormalities, most of the patients were able to correct errors. Only in lateral prefrontal cortex patients whose lesions extended into the frontal white matter, disrupting the connections to the motor anterior cingulate cortex and the striatum, were error corrections severely impaired. In sum, the fronto—striato—thalamo—cortical circuits seem necessary for the generation of error-related negativity, even when brain plasticity has resulted in behavioral compensation of the damage. Thus, error-related ERPs in patients provide a sensitive measure of the integrity of the performance monitoring network.


2014 ◽  
Vol 111 (9) ◽  
pp. 1717-1720 ◽  
Author(s):  
Abbas Khani

Recently, the functional specialization of prefrontal areas of the brain, and, specifically, the functional dissociation of the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), during decision making have become a particular focus of research. A number of neuropsychological and lesion studies have shown that the OFC and ACC have dissociable functions in various dimensions of decision making, which are supported by their different anatomical connections. A recent single-neuron study, however, described a more complex picture of the functional dissociation between these two frontal regions during decision making. Here, I discuss the results of that study and consider alternative interpretations in connection with other findings.


2021 ◽  
Author(s):  
Mohammad Ali Salehinejad ◽  
Elham Ghanavati ◽  
Mohammed Harun Ar Rashid ◽  
Michael A Nitsche

Executive functions (EFs), or cognitive control, are higher-order cognitive functions needed for adaptive goal-directed behaviours and are significantly impaired in majority of neuropsychiatric disorders. Different models and approaches are proposed for describing how EFs are functionally organized in the brain. One popular and recently proposed organizing principle of EFs is the distinction between hot (i.e., reward or affective-related) vs cold (i.e., purely cognitive) domains of EFs. The prefrontal cortex is traditionally linked to EFs, but on the other hand, anterior and posterior cingulate cortices are involved in EFs as well. In this review, we first define EFs, their domains, and the appropriate methods for studying them. Second, we discuss how hot and cold EFs are linked to different areas of the prefrontal cortex. Third, we discuss the association of hot vs cold EFs with the cingulate cortex with a specific focus on anterior and posterior compartments. Finally, we propose a functional model for hot and cold EF organization in the brain with a specific focus on the fronto-cingular network. We also discuss clinical implications of hot vs cold cognition in major neuropsychiatric disorders (depression, schizophrenia, anxiety disorders, substance use disorder, attention-deficit hyperactivity disorder, and autism) and attempt to characterize their profile according to the functional dominance of hot-cold cognition. Our model proposes that the lateral prefrontal cortex, along with the dorsal anterior cingulate cortex are more relevant for cold EFs and the medial-orbital prefrontal cortex along with the ventral anterior cingulate cortex, and posterior cingulate cortex are more closely involved in hot EFs. This functional distinction, however, is not absolute and depends on several factors including task features, context, and the extent to which the measured function relies on cognition and emotion or both.


2010 ◽  
Vol 44 (4) ◽  
pp. 301-308 ◽  
Author(s):  
AO Bennett ◽  
R Maxwell

Depression is accompanied by an increase in activity in the amygdala and a decrease in the rostral anterior cingulate cortex (rACC), with the former attributed to a failure of the latter to exert its normal inhibitory influence. This failure is likely due to regression of synaptic connections between the rACC and the amygdala, a process reversed in part by selective serotonin reuptake inhibitors (SSRIs). The present work presents a hypothesis as to how SSRIs might bring about this process and hence normalization of activity, at least in patients that are responsive to SSRIs. Serotonin receptors of the excitatory 5-HT2AR class increase N-methyl-D-aspartate receptor (NMDAR) efficacy, while those of the inhibitory 5-HT1AR class decrease NMDAR efficacy. A decrease of 5-HT transporter (5-HTT) efficacy, either during human development through functional polymorphisms, or in animals through 5-HTT transgenic knockouts, is accompanied by a decrease in 5-HT1AR and hence an increase in excitability and NMDAR efficacy which drives an increase in synaptic spines in the amygdala. As the limbic region of the brain normally possesses high levels of 5-HT1AR the effect of loss of these is to increase excitation in this region, as is observed. Changes in the level of extracellular 5-HT in adult animals also modulates the density of synaptic spines, with these increasing with an increase in 5-HT, possibly as a consequence of increases in 5-HT2AR activity over that of 5-HT1AR. Increasing extracellular levels of 5-HT with SSRIs would then lead to an increase in excitability and in synaptic spines for afferents in the dorsal rostral anterior cingulate cortex but not in the ventral regions such as the amygdala that have few 5-HT2AR. This allows dorsal regions to once more exert their inhibitory influence over ventral regions. In this way, SSRIs may exert their effect in normalizing dorsal hypometabolism and ventral hypermetabolism in those suffering from depression.


2021 ◽  
Vol 11 (8) ◽  
pp. 1096
Author(s):  
Yixuan Chen

Decision making is crucial for animal survival because the choices they make based on their current situation could influence their future rewards and could have potential costs. This review summarises recent developments in decision making, discusses how rewards and costs could be encoded in the brain, and how different options are compared such that the most optimal one is chosen. The reward and cost are mainly encoded by the forebrain structures (e.g., anterior cingulate cortex, orbitofrontal cortex), and their value is updated through learning. The recent development on dopamine and the lateral habenula’s role in reporting prediction errors and instructing learning will be emphasised. The importance of dopamine in powering the choice and accounting for the internal state will also be discussed. While the orbitofrontal cortex is the place where the state values are stored, the anterior cingulate cortex is more important when the environment is volatile. All of these structures compare different attributes of the task simultaneously, and the local competition of different neuronal networks allows for the selection of the most appropriate one. Therefore, the total value of the task is not encoded as a scalar quantity in the brain but, instead, as an emergent phenomenon, arising from the computation at different brain regions.


2021 ◽  
pp. 1-10
Author(s):  
Megan E. Monko ◽  
Sarah R. Heilbronner

Abstract Previous studies of the retrosplenial cortex (RSC) have focused on its role in navigation and memory, consistent with its well-established medial temporal connections, but recent evidence also suggests a role for this region in reward and decision making. Because function is determined largely by anatomical connections, and to better understand the anatomy of RSC, we used tract-tracing methods to examine the anatomical connectivity between the rat RSC and frontostriatal networks (canonical reward and decision-making circuits). We find that, among frontal cortical regions, RSC bidirectionally connects most strongly with the anterior cingulate cortex, but also with an area of the central–medial orbito-frontal cortex. RSC projects to the dorsomedial striatum, and its terminal fields are virtually encompassed by the frontal-striatal projection zone, suggestive of functional convergence through the basal ganglia. This overlap is driven by anterior cingulate cortex, prelimbic cortex, and orbito-frontal cortex, all of which contribute to goal-directed decision making, suggesting that the RSC is involved in similar processes.


2020 ◽  
Author(s):  
Maya Zhe Wang ◽  
Benjamin Yost Hayden

ABSTRACTDisparity between current and desired information, known as information gap, is an important driver of information-seeking and curiosity. To gain insight into its neural basis, we recorded responses of single neurons in dorsal anterior cingulate cortex (dACC) while rhesus macaques performed a task that induces and quantifies demand for information. We find that enhanced firing rates in dACC before the start of a trial predict a stronger bias towards information-seeking choices. Following choices of uninformative options, firing rates are tonically enhanced until information is delivered. The level of enhancement observed is correlated on a trial-by-trial basis with the value assigned to the prospective information. Finally, variation in this tone is positively correlated with receptiveness to new information, as inferred by preference changes on subsequent trials. These patterns are not observed in a complementary dataset collected in orbitofrontal cortex (OFC), suggesting these effects reflect at least somewhat anatomically localized processing.


Sign in / Sign up

Export Citation Format

Share Document