scholarly journals Anomalous magnetoresistance due to longitudinal spin fluctuations in a Jeff = 1/2 Mott semiconductor

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lin Hao ◽  
Zhentao Wang ◽  
Junyi Yang ◽  
D. Meyers ◽  
Joshua Sanchez ◽  
...  

AbstractAs a hallmark of electronic correlation, spin-charge interplay underlies many emergent phenomena in doped Mott insulators, such as high-temperature superconductivity, whereas the half-filled parent state is usually electronically frozen with an antiferromagnetic order that resists external control. We report on the observation of a positive magnetoresistance that probes the staggered susceptibility of a pseudospin-half square-lattice Mott insulator built as an artificial SrIrO3/SrTiO3 superlattice. Its size is particularly large in the high-temperature insulating paramagnetic phase near the Néel transition. This magnetoresistance originates from a collective charge response to the large longitudinal spin fluctuations under a linear coupling between the external magnetic field and the staggered magnetization enabled by strong spin-orbit interaction. Our results demonstrate a magnetic control of the binding energy of the fluctuating particle-hole pairs in the Slater-Mott crossover regime analogous to the Bardeen-Cooper-Schrieffer-to-Bose-Einstein condensation crossover of ultracold-superfluids.

2017 ◽  
Vol 31 (25) ◽  
pp. 1745005
Author(s):  
I. Božović ◽  
X. He ◽  
J. Wu ◽  
A. T. Bollinger

Cuprate superconductors exhibit many features, but the ultimate question is why the critical temperature ([Formula: see text]) is so high. The fundamental dichotomy is between the weak-pairing, Bardeen–Cooper–Schrieffer (BCS) scenario, and Bose–Einstein condensation (BEC) of strongly-bound pairs. While for underdoped cuprates it is hotly debated which of these pictures is appropriate, it is commonly believed that on the overdoped side strongly-correlated fermion physics evolves smoothly into the conventional BCS behavior. Here, we test this dogma by studying the dependence of key superconducting parameters on doping, temperature, and external fields, in thousands of cuprate samples. The findings do not conform to BCS predictions anywhere in the phase diagram.


2019 ◽  
Vol 10 (1) ◽  
pp. 315-336 ◽  
Author(s):  
Joel Bertinshaw ◽  
Y.K. Kim ◽  
Giniyat Khaliullin ◽  
B.J. Kim

Over the past few years, Sr2IrO4, a single-layer member of the Ruddlesden–Popper series iridates, has received much attention as a close analog of cuprate high-temperature superconductors. Although there is not yet firm evidence for superconductivity, a remarkable range of cuprate phenomenology has been reproduced in electron- and hole-doped iridates including pseudogaps, Fermi arcs, and d-wave gaps. Furthermore, many symmetry-breaking orders reminiscent of those decorating the cuprate phase diagram have been reported using various experimental probes. We discuss how the electronic structures of Sr2IrO4 through strong spin-orbit coupling leads to the low-energy physics that had long been unique to cuprates, what the similarities and differences between cuprates and iridates are, and how these advance the field of high-temperature superconductivity by isolating essential ingredients of superconductivity from a rich array of phenomena that surround it. Finally, we comment on the prospect of finding a new high-temperature superconductor based on the iridate series.


1987 ◽  
Vol 36 (16) ◽  
pp. 8302-8308 ◽  
Author(s):  
Kerson Huang ◽  
Efstratios Manousakis

2013 ◽  
Vol 115 (3) ◽  
pp. 363-367
Author(s):  
I. Yu. Chestnov ◽  
A. P. Alodjants ◽  
S. M. Arakelian

2001 ◽  
Vol 15 (10n11) ◽  
pp. 1305-1311 ◽  
Author(s):  
C. E. CAMPBELL ◽  
J. W. CLARK ◽  
E. KROTSCHECK ◽  
L. P. PITAEVSKII

The Eugene Feenberg Medal is awarded to Anthony J. Leggett in recognition of his seminal contributions to Many-Body Physics, including the explanation of the remarkable properties of superfluid 3 He in the millikelvin regime, important results in Fermi-liquid theory applied to metals, fundamental new insights into macroscopic quantum coherence, elucidation of key aspects of high-temperature superconductivity, and pioneering studies of the implications of Bose-Einstein condensation in atomic systems.


Sign in / Sign up

Export Citation Format

Share Document