scholarly journals Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Haimei Wang ◽  
Yuguo Xia ◽  
Haiping Li ◽  
Xiang Wang ◽  
Yuan Yu ◽  
...  
2016 ◽  
Vol 4 (36) ◽  
pp. 13736-13741 ◽  
Author(s):  
Zexun Jin ◽  
Zhuofeng Hu ◽  
Jimmy C. Yu ◽  
Jianfang Wang

A Cu2O photocathode with excellent PEC performance was fabricated by a simple comproportionation reaction between Cu0 and Cu2+.


2020 ◽  
Author(s):  
Haimei Wang ◽  
Yuguo Xia ◽  
Haiping Li ◽  
Xiang Wang ◽  
Yuan Yu ◽  
...  

<div>The exploration of photoanode materials with high efficiency and stability is the </div><div>eternal pursuit for the realization of practically solar-driven photoelectrochemical </div><div>water splitting. Here we develop a novel deficient ternary metal sulfide (CdIn2S4) </div><div>as photoanode, and its PEC performance is significantly enhanced by introducing </div><div>surface S vacancies, achieving a photocurrent density of 5.73 mA cm-2 at 1.23 V vs. </div><div>RHE and 1 Sun and an applied bias photon-to-current efficiency of 2.49% at 0.477 </div><div>V vs. RHE, which, to the best of our knowledge, are the record-high values for a </div><div>single sulfide photon absorber to date. The experimental characterizations and </div><div>theoretical calculations highlight the enhanced effect of surface S vacancies on the </div><div>interfacial charge separation and transfer kinetics, and also demonstrate the </div><div>restrained surface states distribution and the transformation of active sites after </div><div>introducing surface S vacancies. This work may inspire more excellent work on </div><div>developing sulfide-based photoanodes. </div>


2020 ◽  
Author(s):  
Haimei Wang ◽  
Yuguo Xia ◽  
Haiping Li ◽  
Xiang Wang ◽  
Yuan Yu ◽  
...  

<div>The exploration of photoanode materials with high efficiency and stability is the </div><div>eternal pursuit for the realization of practically solar-driven photoelectrochemical </div><div>water splitting. Here we develop a novel deficient ternary metal sulfide (CdIn2S4) </div><div>as photoanode, and its PEC performance is significantly enhanced by introducing </div><div>surface S vacancies, achieving a photocurrent density of 5.73 mA cm-2 at 1.23 V vs. </div><div>RHE and 1 Sun and an applied bias photon-to-current efficiency of 2.49% at 0.477 </div><div>V vs. RHE, which, to the best of our knowledge, are the record-high values for a </div><div>single sulfide photon absorber to date. The experimental characterizations and </div><div>theoretical calculations highlight the enhanced effect of surface S vacancies on the </div><div>interfacial charge separation and transfer kinetics, and also demonstrate the </div><div>restrained surface states distribution and the transformation of active sites after </div><div>introducing surface S vacancies. This work may inspire more excellent work on </div><div>developing sulfide-based photoanodes. </div>


2020 ◽  
Vol 49 (3) ◽  
pp. 588-592 ◽  
Author(s):  
Fusheng Li ◽  
Ziqi Zhao ◽  
Hao Yang ◽  
Dinghua Zhou ◽  
Yilong Zhao ◽  
...  

A cobalt oxide catalyst prepared by a flame-assisted deposition method on the surface of FTO and hematite for electrochemical and photoelectrochemical water oxidation, respectively.


2019 ◽  
Author(s):  
Jiajia Tao ◽  
Hong-Ping Ma ◽  
Kaiping Yuan ◽  
Yang Gu ◽  
Jianwei Lian ◽  
...  

<div>As a promising oxygen evolution reaction semiconductor, TiO2 has been extensively investigated for solar photoelectrochemical water splitting. Here, a highly efficient and stable strategy for rationally preparing GaON cocatalysts on TiO2 by atomic layer deposition is demonstrated, which we show significantly enhances the</div><div>photoelectrochemical performance compared to TiO2-based photoanodes. For TiO2@20 nm-GaON core-shell nanowires a photocurrent density up to 1.10 mA cm-2 (1.23 V vs RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of TiO2 NWs. Furthermore, the oxygen vacancy formation on GaON as well as the band gap matching with TiO2 not only provides more active sites for water oxidation but also enhances light absorption to promote interfacial charge separation and migration. Density functional theory studies of model systems of GaON-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaON core-shell nanowires provide a deeper understanding and universal strategy for enhancing photoelectrochemical performance of photoanodes now available. </div>


Sign in / Sign up

Export Citation Format

Share Document