scholarly journals Humanizing the yeast origin recognition complex

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Clare S. K. Lee ◽  
Ming Fung Cheung ◽  
Jinsen Li ◽  
Yongqian Zhao ◽  
Wai Hei Lam ◽  
...  

AbstractThe Origin Recognition Complex (ORC) is an evolutionarily conserved six-subunit protein complex that binds specific sites at many locations to coordinately replicate the entire eukaryote genome. Though highly conserved in structure, ORC’s selectivity for replication origins has diverged tremendously between yeasts and humans to adapt to vastly different life cycles. In this work, we demonstrate that the selectivity determinant of ORC for DNA binding lies in a 19-amino acid insertion helix in the Orc4 subunit, which is present in yeast but absent in human. Removal of this motif from Orc4 transforms the yeast ORC, which selects origins based on base-specific binding at defined locations, into one whose selectivity is dictated by chromatin landscape and afforded with plasticity, as reported for human. Notably, the altered yeast ORC has acquired an affinity for regions near transcriptional start sites (TSSs), which the human ORC also favors.

2003 ◽  
Vol 77 (16) ◽  
pp. 8915-8923 ◽  
Author(s):  
Laura M. Palermo ◽  
Karsten Hueffer ◽  
Colin R. Parrish

ABSTRACT Canine parvovirus (CPV) and feline panleukopenia virus (FPV) capsids bind to the transferrin receptors (TfRs) of their hosts and use these receptors to infect cells. The binding is partially host specific, as FPV binds only to the feline TfR, while CPV binds to both the canine and feline TfRs. The host-specific binding is controlled by a combination of residues within a raised region of the capsid. To define the TfR structures that interact with the virus, we altered the apical domain of the feline or canine TfR or prepared chimeras of these receptors and tested the altered receptors for binding to FPV or CPV capsids. Most changes in the apical domain of the feline TfR did not affect binding, but replacing Leu221 with Ser or Asp prevented receptor binding to either FPV or CPV capsids, while replacing Leu221 with Lys resulted in a receptor that bound only to CPV but not to FPV. Analysis of recombinants of the feline and canine TfRs showed that sequences controlling CPV-specific binding were within the apical domain and that more than one difference between these receptors determined the CPV-specific binding of the canine TfR. Single changes within the canine TfR which removed a single amino acid insertion or which eliminated a glycosylation site gave that receptor the expanded ability to bind to FPV and CPV. In some cases, binding of capsids to mutant receptors did not result in infection, suggesting a structural role for the receptor in cell infection by the viruses.


2010 ◽  
Vol 285 (25) ◽  
pp. 19153-19161 ◽  
Author(s):  
Lidiya Orlichenko ◽  
Rory Geyer ◽  
Masahiro Yanagisawa ◽  
Davitte Khauv ◽  
Evette S. Radisky ◽  
...  

1999 ◽  
Vol 4 (1-3) ◽  
pp. d805 ◽  
Author(s):  
David, G. Quintana

Author(s):  
João Pereira‐Vaz ◽  
Pedro Crespo ◽  
Luísa Mocho ◽  
Patrícia Martinho ◽  
Teresa Fidalgo ◽  
...  

1999 ◽  
Vol 274 (4) ◽  
pp. 2093-2096 ◽  
Author(s):  
Kunihiko Tanaka ◽  
Gregorio D. Chazenbalk ◽  
Sandra M. McLachlan ◽  
Basil Rapoport

2005 ◽  
Vol 4 (4) ◽  
pp. 832-835 ◽  
Author(s):  
Terri S. Rice ◽  
Min Ding ◽  
David S. Pederson ◽  
Nicholas H. Heintz

ABSTRACT Here we show that the Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.


Sign in / Sign up

Export Citation Format

Share Document