scholarly journals Emergency deployment of direct air capture as a response to the climate crisis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan Hanna ◽  
Ahmed Abdulla ◽  
Yangyang Xu ◽  
David G. Victor

AbstractThough highly motivated to slow the climate crisis, governments may struggle to impose costly polices on entrenched interest groups, resulting in a greater need for negative emissions. Here, we model wartime-like crash deployment of direct air capture (DAC) as a policy response to the climate crisis, calculating funding, net CO2 removal, and climate impacts. An emergency DAC program, with investment of 1.2–1.9% of global GDP annually, removes 2.2–2.3 GtCO2 yr–1 in 2050, 13–20 GtCO2 yr–1 in 2075, and 570–840 GtCO2 cumulatively over 2025–2100. Compared to a future in which policy efforts to control emissions follow current trends (SSP2-4.5), DAC substantially hastens the onset of net-zero CO2 emissions (to 2085–2095) and peak warming (to 2090–2095); yet warming still reaches 2.4–2.5 °C in 2100. Such massive CO2 removals hinge on near-term investment to boost the future capacity for upscaling. DAC is most cost-effective when using electricity sources already available today: hydropower and natural gas with renewables; fully renewable systems are more expensive because their low load factors do not allow efficient amortization of capital-intensive DAC plants.

2021 ◽  
Author(s):  
Ryan Hanna ◽  
Ahmed Abdulla ◽  
Yangyang Xu ◽  
David Victor

<p>Global emissions of CO<sub>2</sub> have been rising at 1–2% per year, and the gap between emissions and what is needed to stop warming at aspirational goals like 1.5ºC is growing. To stabilize warming at 1.5ºC, most studies find that societies must rapidly decarbonize their economy while also removing CO<sub>2</sub> previously emitted to the atmosphere. In response to these realities, dozens of national governments, thousands of local administrative governments, and scores of scientists have made formal declarations of a climate crisis that demands a crisis response. In times of crisis, such as war or pandemics, many barriers to policy expenditure and implementation are eclipsed by the need to mobilize aggressively around new missions; and policymaking forged in crisis often reinforces incumbents such as industrial producers. Though highly motivated to slow the climate crisis, governments may struggle to impose costly polices on entrenched interest groups and incumbents, resulting in less mitigation and therefore a greater need for negative emissions.</p><p>We model wartime-like crash deployment of CO<sub>2</sub> direct air capture (DAC) as a policy response to the climate crisis, calculating (1) the crisis-level financial resources which could be made available for DAC; (2) deployment of DAC plants paired with all combinations of scalable energy supplies and the volumes of CO<sub>2</sub> each combination could remove from the atmosphere; and (3) the effects of such a program on atmospheric CO<sub>2</sub> concentration and global mean surface temperature.</p><p>Government expenditure directed to crises has varied, but on average may be about 5% of national GDP. Thus, we calculate that an emergency DAC program with annual investment of 1.2–1.9% of global GDP (anchored on 5% of US GDP; $1–1.6 trillion) removes 2.2–2.3 GtCO<sub>2</sub> yr<sup>–1</sup> in 2050, 13–20 GtCO<sub>2</sub> yr<sup>–1</sup> in 2075, and 570–840 GtCO<sub>2</sub> cumulatively over 2025–2100. Though comprising several thousand plants, the DAC program cannot substitute for conventional mitigation: compared to a future in which policy efforts to control emissions follow current trends (SSP2-4.5), DAC substantially hastens the onset of net-zero CO<sub>2</sub> emissions (to 2085–2095) and peak warming (to 2090–2095); yet warming still reaches 2.4–2.5ºC in 2100. Only with substantial cuts to emissions (SSP1-2.6) does the DAC program hold temperature rise to 2ºC.</p><p>Achieving such massive CO<sub>2</sub> removals hinges on near-term investment to boost the future capacity for upscaling. With such prodigious funds, the constraints on DAC deployment in the 2–3 decades following the start of the program are not money but scalability. Early deployments are important because they help drive the technology down its learning curve (indeed, in the long run, initial costs matter less than performance ceilings); they are also important because they increase the potential for future rapid upscaling. Deployment of DAC need not wait for fully decarbonized power grids: we find DAC to be most cost-effective when paired with electricity sources already available today: hydropower and natural gas with renewables; fully renewable systems are more expensive because their low load factors do not allow efficient amortization of capital-intensive DAC plants.</p>


2019 ◽  
Vol 12 (12) ◽  
pp. 3567-3574 ◽  
Author(s):  
Mark Z. Jacobson

Data from a coal with carbon capture and use (CCU) plant and a synthetic direct air carbon capture and use (SDACCU) plant are analyzed for the equipment's ability, alone, to reduce CO2.


2021 ◽  
Vol 166 (3-4) ◽  
Author(s):  
Vijay S. Limaye

AbstractClimate change–driven health impacts are serious, widespread, and costly. Importantly, such damages are largely absent from policy debates around the costs of delay and inaction on this crisis. While climate change is a global problem, its impacts are localized and personal, and there is growing demand for specific information on how climate change affects human health in different places. Existing research indicates that climate-fueled health problems are growing, and that investments in reducing carbon pollution and improving community resilience could help to avoid tens to hundreds of billions of dollars in climate-sensitive health impacts across the USA each year, including those stemming from extreme heat, air pollution, hurricanes, and wildfires. Science that explores the underappreciated local health impacts and health-related costs of climate change can enhance advocacy by demonstrating the need to both address the root causes of climate change and enhance climate resilience in vulnerable communities. The climate crisis has historically been predominantly conceived as a global environmental challenge; examination of climate impacts on public health enables researchers to localize this urgent problem for members of the public and policymakers. In turn, approaches to climate science that focus on health can make dangerous climate impacts and the need for cost-effective solutions more salient and tangible.


2021 ◽  
Author(s):  
Keywan Riahi ◽  
Christoph Bertram ◽  
Daniel Huppmann ◽  
Joeri Rogelj ◽  
Valentina Bosetti ◽  
...  

Abstract Global emissions scenarios play a critical role in the assessment of strategies to mitigate climate change and their related societal transformations. The current generation of scenarios, however, are criticized because they rely heavily on net negative CO2 emissions (NNCE) that result from allowing temperature limits to be temporarily exceeded. In this study we present a new set of emissions scenarios that exclude NNCE. We show that such scenarios require a more rapid near-term transformation with significant long-term gains for the economy (even without considering the benefits of avoided climate impacts). Scenarios that avoid temperature overshoot and NNCE are thus not only economically more attractive over the long term, they also involve lower climate risks. Our study further identifies possible alternative configurations of net-zero CO2 emissions systems and the distinct roles of different sectors and regions in order to balance emissions sources and sinks.


2021 ◽  
Vol 46 ◽  
pp. 101487
Author(s):  
Marco Marchese ◽  
Giulio Buffo ◽  
Massimo Santarelli ◽  
Andrea Lanzini

2021 ◽  
pp. 100018
Author(s):  
Max Wei ◽  
Sang Hoon Lee ◽  
Tianzhen Hong ◽  
Brian Conlon ◽  
Lucy McKenzie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document