scholarly journals Insight-HXMT observations of jet-like corona in a black hole X-ray binary MAXI J1820+070

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bei You ◽  
Yuoli Tuo ◽  
Chengzhe Li ◽  
Wei Wang ◽  
Shuang-Nan Zhang ◽  
...  
Keyword(s):  

AbstractA black hole X-ray binary produces hard X-ray radiation from its corona and disk when the accreting matter heats up. During an outburst, the disk and corona co-evolves with each other. However, such an evolution is still unclear in both its geometry and dynamics. Here we report the unusual decrease of the reflection fraction in MAXI J1820+070, which is the ratio of the coronal intensity illuminating the disk to the coronal intensity reaching the observer, as the corona is observed to contrast during the decay phase. We postulate a jet-like corona model, in which the corona can be understood as a standing shock where the material flowing through. In this dynamical scenario, the decrease of the reflection fraction is a signature of the corona’s bulk velocity. Our findings suggest that as the corona is observed to get closer to the black hole, the coronal material might be outflowing faster.

2019 ◽  
Vol 487 (4) ◽  
pp. 5335-5345 ◽  
Author(s):  
Hao Liu ◽  
AiJun Dong ◽  
ShanShan Weng ◽  
Qingwen Wu

ABSTRACT Negative and positive correlations between the X-ray photon index and the Eddington-scaled X-ray luminosity were found in the decay phase of X-ray binary outbursts and a sample of active galactic nuclei in former works. We systematically investigate the evolution of the X-ray spectral index, along with the X-ray flux and Eddington ratio, in eight outbursts of four black-hole X-ray binaries, where all selected outbursts have observational data from the Rossi X-ray Timing Explorer in both rise and decay phases. In the initial rise phase, the X-ray spectral index is anticorrelated with the flux and the X-ray spectrum quickly softens when the X-ray flux is approaching the peak value. In the decay phase, the X-ray photon index and the flux follow two different positive correlations and they become anticorrelated again when the X-ray flux is below a critical value, where the anticorrelation part follows the same trend as found in the initial rise phase. Compared with other X-ray binaries, GRO J1655−40 has an evident lower critical Eddington ratio for the anticorrelation and positive transition, which suggests that its black-hole mass and distance are not well constrained, or its intrinsic physics is different.


1998 ◽  
Vol 188 ◽  
pp. 388-389
Author(s):  
A. Kubota ◽  
K. Makishima ◽  
T. Dotani ◽  
H. Inoue ◽  
K. Mitsuda ◽  
...  

About 10 X-ray binaries in our Galaxy and LMC/SMC are considered to contain black hole candidates (BHCs). Among these objects, Cyg X-1 was identified as the first BHC, and it has led BHCs for more than 25 years(Oda 1977, Liang and Nolan 1984). It is a binary system composed of normal blue supergiant star and the X-ray emitting compact object. The orbital kinematics derived from optical observations indicates that the compact object is heavier than ~ 4.8 M⊙ (Herrero 1995), which well exceeds the upper limit mass for a neutron star(Kalogora 1996), where we assume the system consists of only two bodies. This has been the basis for BHC of Cyg X-1.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 25
Author(s):  
Debjit Chatterjee ◽  
Arghajit Jana ◽  
Kaushik Chatterjee ◽  
Riya Bhowmick ◽  
Sujoy Kumar Nath ◽  
...  

We study the properties of the faint X-ray activity of Galactic transient black hole candidate XTE J1908+094 during its 2019 outburst. Here, we report the results of detailed spectral and temporal analysis during this outburst using observations from Nuclear Spectroscopic Telescope Array (NuSTAR). We have not observed any quasi-periodic-oscillations (QPOs) in the power density spectrum (PDS). The spectral study suggests that the source remained in the softer (more precisely, in the soft–intermediate) spectral state during this short period of X-ray activity. We notice a faint but broad Fe Kα emission line at around 6.5 keV. We also estimate the probable mass of the black hole to be 6.5−0.7+0.5M⊙, with 90% confidence.


2021 ◽  
Vol 502 (1) ◽  
pp. L72-L78
Author(s):  
K Mohamed ◽  
E Sonbas ◽  
K S Dhuga ◽  
E Göğüş ◽  
A Tuncer ◽  
...  

ABSTRACT Similar to black hole X-ray binary transients, hysteresis-like state transitions are also seen in some neutron-star X-ray binaries. Using a method based on wavelets and light curves constructed from archival Rossi X-ray Timing Explorer observations, we extract a minimal timescale over the complete range of transitions for 4U 1608-52 during the 2002 and 2007 outbursts and the 1999 and 2000 outbursts for Aql X-1. We present evidence for a strong positive correlation between this minimal timescale and a similar timescale extracted from the corresponding power spectra of these sources.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


2019 ◽  
Vol 15 (S356) ◽  
pp. 348-350
Author(s):  
Eva Šrámková ◽  
K. Goluchová ◽  
G. Török ◽  
Marek A. Abramowicz ◽  
Z. Stuchlík ◽  
...  

AbstractA strong quasi-periodic modulation has recently been revealed in the X-ray flux of the X-ray source XMMUJ134736.6+173403. The two observed twin-peak quasiperiodic oscillations (QPOs) exhibit a 3:1 frequency ratio and strongly support the evidence for the presence of an active galactic nucleus black hole (AGN BH). It has been suggested that detections of twin-peak QPOs with commensurable frequency ratios and scaling of their periods with BH mass could provide the basis for a method intended to determine the mass of BH sources, such as AGNs. Assuming the orbital origin of QPOs, we calculate the upper and lower limit on the AGN BH mass M, reaching M ≍ 107–109M⊙. Compared to mass estimates of other sources, XMMUJ134736.6+173403 appears to be the most massive source with commensurable QPO frequencies, and its mass represents the current observational upper limit on the AGN BH mass obtained from the QPO observations.


Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


2020 ◽  
Vol 493 (1) ◽  
pp. L81-L86 ◽  
Author(s):  
P Atri ◽  
J C A Miller-Jones ◽  
A Bahramian ◽  
R M Plotkin ◽  
A T Deller ◽  
...  

ABSTRACT Using the Very Long Baseline Array and the European Very Long Baseline Interferometry Network, we have made a precise measurement of the radio parallax of the black hole X-ray binary MAXI J1820+070, providing a model-independent distance to the source. Our parallax measurement of (0.348 ± 0.033) mas for MAXI J1820+070 translates to a distance of (2.96 ± 0.33) kpc. This distance implies that the source reached (15 ± 3) per cent of the Eddington luminosity at the peak of its outburst. Further, we use this distance to refine previous estimates of the jet inclination angle, jet velocity, and the mass of the black hole in MAXI J1820+070 to be (63 ± 3)°, (0.89 ± 0.09) c, and (9.2 ± 1.3) M⊙, respectively.


Sign in / Sign up

Export Citation Format

Share Document