scholarly journals Spin-polarized oxygen evolution reaction under magnetic field

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Ren ◽  
Tianze Wu ◽  
Yuanmiao Sun ◽  
Yan Li ◽  
Guoyu Xian ◽  
...  

AbstractThe oxygen evolution reaction (OER) is the bottleneck that limits the energy efficiency of water-splitting. The process involves four electrons’ transfer and the generation of triplet state O2 from singlet state species (OH- or H2O). Recently, explicit spin selection was described as a possible way to promote OER in alkaline conditions, but the specific spin-polarized kinetics remains unclear. Here, we report that by using ferromagnetic ordered catalysts as the spin polarizer for spin selection under a constant magnetic field, the OER can be enhanced. However, it does not applicable to non-ferromagnetic catalysts. We found that the spin polarization occurs at the first electron transfer step in OER, where coherent spin exchange happens between the ferromagnetic catalyst and the adsorbed oxygen species with fast kinetics, under the principle of spin angular momentum conservation. In the next three electron transfer steps, as the adsorbed O species adopt fixed spin direction, the OER electrons need to follow the Hund rule and Pauling exclusion principle, thus to carry out spin polarization spontaneously and finally lead to the generation of triplet state O2. Here, we showcase spin-polarized kinetics of oxygen evolution reaction, which gives references in the understanding and design of spin-dependent catalysts.

2021 ◽  
Author(s):  
Xiao Ren ◽  
Tianze Wu ◽  
Yuanmiao Sun ◽  
Yan Li ◽  
Guoyu Xian ◽  
...  

<p><a></a><a>The oxygen evolution reaction (OER) is the bottleneck that limits the energy efficiency of water-splitting. The process involves four electrons’ transfer and the generation of triplet state O<sub>2</sub> from singlet state species (OH<sup>- </sup>or H<sub>2</sub>O). Recently, explicit spin selection was described as a possible way to promote OER in alkaline conditions, but the specific spin-polarized kinetics remains unclear. </a><a></a><a>Here, we report that </a><a>by using ferromagnetic ordered catalysts as the spin polarizer for spin selection under </a><a></a><a>a constant magnetic field</a>, <a>the OER can be enhanced.</a> However, it does not applicable to non-ferromagnetic catalysts. We found that the spin <a>polarization occurs at the first electron transfer step in OER</a>, where <a></a><a>coherent spin exchange happens </a>between the <a></a><a>ferromagnetic</a> catalyst and the adsorbed oxygen species <a>with fast kinetics</a>, under the principle of spin angular momentum conservation. In the next three electron transfer steps, as the adsorbed O species adopt fixed spin direction, the OER electrons need to follow the Hund rule and Pauling exclusion principle, thus to carry out spin polarization spontaneously and finally lead to the generation of triplet state O<sub>2</sub>. Here, we showcase spin-polarized kinetics of oxygen evolution reaction, which gives references in the understanding and design of spin-dependent catalysts.</p>


2021 ◽  
Author(s):  
Xiao Ren ◽  
Tianze Wu ◽  
Yuanmiao Sun ◽  
Yan Li ◽  
Guoyu Xian ◽  
...  

<p><a></a><a>The oxygen evolution reaction (OER) is the bottleneck that limits the energy efficiency of water-splitting. The process involves four electrons’ transfer and the generation of triplet state O<sub>2</sub> from singlet state species (OH<sup>- </sup>or H<sub>2</sub>O). Recently, explicit spin selection was described as a possible way to promote OER in alkaline conditions, but the specific spin-polarized kinetics remains unclear. </a><a></a><a>Here, we report that </a><a>by using ferromagnetic ordered catalysts as the spin polarizer for spin selection under </a><a></a><a>a constant magnetic field</a>, <a>the OER can be enhanced.</a> However, it does not applicable to non-ferromagnetic catalysts. We found that the spin <a>polarization occurs at the first electron transfer step in OER</a>, where <a></a><a>coherent spin exchange happens </a>between the <a></a><a>ferromagnetic</a> catalyst and the adsorbed oxygen species <a>with fast kinetics</a>, under the principle of spin angular momentum conservation. In the next three electron transfer steps, as the adsorbed O species adopt fixed spin direction, the OER electrons need to follow the Hund rule and Pauling exclusion principle, thus to carry out spin polarization spontaneously and finally lead to the generation of triplet state O<sub>2</sub>. Here, we showcase spin-polarized kinetics of oxygen evolution reaction, which gives references in the understanding and design of spin-dependent catalysts.</p>


Author(s):  
Hanna Lyle ◽  
Suryansh Singh ◽  
Michael Paolino ◽  
Ilya Vinogradov ◽  
Tanja Cuk

The conversion of diffusive forms of energy (electrical and light) into short, compact chemical bonds by catalytic reactions regularly involves moving a carrier from an environment that favors delocalization to one that favors localization.


2020 ◽  
Vol 8 (8) ◽  
pp. 4407-4415 ◽  
Author(s):  
Zechao Shen ◽  
Yongbin Zhuang ◽  
Weiwei Li ◽  
Xiaochun Huang ◽  
Freddy E. Oropeza ◽  
...  

Hole for faster OER: The hole state induced by Fe4+ promotes the OER process. It reduces the energy barrier for electron transfer at the interface and facilitates a faster electron transfer from reaction intermediates to the catalyst.


1971 ◽  
Vol 49 (14) ◽  
pp. 1850-1860 ◽  
Author(s):  
R. R. Parsons

Spin-polarized electrons are created in the conduction band of p-type GaSb by excitation with σ+ or σ− circularly polarized light. The degree of polarization of the photoluminescence is used to measure the optically pumped spin polarization. The measurements as a function of transverse magnetic field yield the spin-relaxation time and the lifetime of the photocreated electrons. The degree of polarization oscillates as a function of the photon energy of the excitation light. This effect is associated with mechanisms of rapid energy loss involving optical and acoustical phonons. The optical pumping is studied as a function of temperature in the range 3.5 °K ≤ T ≤ 11 °K. A maximum spin polarization [Formula: see text] is obtained at [Formula: see text]. The efficiency of the optical pumping is significantly increased with the application of a weak longitudinal magnetic field.


2011 ◽  
Vol 194-196 ◽  
pp. 679-682
Author(s):  
Zahra Bamshad

The spin-polarized transport is investigated in a magnetic tunnel junction which consists of two ferromagnetic electrodes separated by a magnetic barrier and a nonmagnetic metallic spacer placed in distance above the two dimensional electron gas (2DEG) in presence of an inhomogeneous external modulated magnetic field and a perpendicular wave vector dependent effective potential. Based on the transfer matrix method and the nearly-free-electron approximation the dependence of the conductance and spin polarization on the Fermi energy of the electrons are studied theoretically the. strong oscillations with large amplitude investigated in spin polarization in terms of the Fermi energy due to the inhomogeneous magnetic field. The conductance in terms of the Fermi energy shows no oscillation in low energy but has a strong pick in middle region. this results may be useful for the development of spin electronic devices based on coherent transport, or may be used as a tunable spin-filter.


Sign in / Sign up

Export Citation Format

Share Document