scholarly journals Highly-efficient electrically-driven localized surface plasmon source enabled by resonant inelastic electron tunneling

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haoliang Qian ◽  
Shilong Li ◽  
Su-Wen Hsu ◽  
Ching-Fu Chen ◽  
Fanglin Tian ◽  
...  

AbstractOn-chip plasmonic circuitry offers a promising route to meet the ever-increasing requirement for device density and data bandwidth in information processing. As the key building block, electrically-driven nanoscale plasmonic sources such as nanoLEDs, nanolasers, and nanojunctions have attracted intense interest in recent years. Among them, surface plasmon (SP) sources based on inelastic electron tunneling (IET) have been demonstrated as an appealing candidate owing to the ultrafast quantum-mechanical tunneling response and great tunability. However, the major barrier to the demonstrated IET-based SP sources is their low SP excitation efficiency due to the fact that elastic tunneling of electrons is much more efficient than inelastic tunneling. Here, we remove this barrier by introducing resonant inelastic electron tunneling (RIET)—follow a recent theoretical proposal—at the visible/near-infrared (NIR) frequencies and demonstrate highly-efficient electrically-driven SP sources. In our system, RIET is supported by a TiN/Al2O3 metallic quantum well (MQW) heterostructure, while monocrystalline silver nanorods (AgNRs) were used for the SP generation (localized surface plasmons (LSPs)). In principle, this RIET approach can push the external quantum efficiency (EQE) close to unity, opening up a new era of SP sources for not only high-performance plasmonic circuitry, but also advanced optical sensing applications.

NANO ◽  
2019 ◽  
Vol 14 (06) ◽  
pp. 1950071
Author(s):  
Haiwei Mu ◽  
Jianxin Wang ◽  
Qiang Liu ◽  
Wei Liu ◽  
Xianli Li ◽  
...  

The extinction spectral properties based on localized surface plasmon resonance (LSPR) of the concentric dual-ring nanodisk (CDRN) structure are investigated by discrete dipole approximation (DDA) and plasmon hybridization theory. The CDRN nanostructure shows flexible tunable multipole resonances in the near-infrared regime and the coupled resonance wavelengths depend on the structural parameters of the nanostructure, which has great potential in multichannel LSPR-based bio-sensing applications.


Photonics ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 23 ◽  
Author(s):  
Tianye Huang ◽  
Shuwen Zeng ◽  
Xiang Zhao ◽  
Zhuo Cheng ◽  
Perry Shum

In the phase-sensitivity-based surface plasmon resonance (SPR) sensing scheme, the highest phase jump usually happens at the darkness or quasi-darkness reflection point, which results in low power for detection. To overcome such a limitation, in this paper, a waveguide-coupled SPR configuration is proposed to work at near-infrared. The coupling between surface plasmon polariton (SPP) mode and photonic waveguide (PWG) mode results in electromagnetically induced transparency (EIT) and asymmetric Fano resonance (FR). Near the resonance, the differential phase between p-polarized and s-polarized incident waves experience drastic variation upon change of the surrounding refractive index. More importantly, since the FR occurs at the resonance slope of SPP mode, the corresponding phase change is accompanied with relatively high reflectivity, which is essential for signal-to-noise ratio (SNR) enhancement and power consumption reduction. Phase sensitivity up to 106 deg/RIU order with a minimum SPR reflectivity higher than 20% is achieved. The proposed scheme provides an alternative approach for high-performance sensing applications using FR.


2006 ◽  
Vol 32 (9) ◽  
pp. 727-734
Author(s):  
H. Nishioka ◽  
T. Yamato ◽  
T. Kakitani

Sign in / Sign up

Export Citation Format

Share Document