scholarly journals Fano Resonance Enhanced Surface Plasmon Resonance Sensors Operating in Near-Infrared

Photonics ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 23 ◽  
Author(s):  
Tianye Huang ◽  
Shuwen Zeng ◽  
Xiang Zhao ◽  
Zhuo Cheng ◽  
Perry Shum

In the phase-sensitivity-based surface plasmon resonance (SPR) sensing scheme, the highest phase jump usually happens at the darkness or quasi-darkness reflection point, which results in low power for detection. To overcome such a limitation, in this paper, a waveguide-coupled SPR configuration is proposed to work at near-infrared. The coupling between surface plasmon polariton (SPP) mode and photonic waveguide (PWG) mode results in electromagnetically induced transparency (EIT) and asymmetric Fano resonance (FR). Near the resonance, the differential phase between p-polarized and s-polarized incident waves experience drastic variation upon change of the surrounding refractive index. More importantly, since the FR occurs at the resonance slope of SPP mode, the corresponding phase change is accompanied with relatively high reflectivity, which is essential for signal-to-noise ratio (SNR) enhancement and power consumption reduction. Phase sensitivity up to 106 deg/RIU order with a minimum SPR reflectivity higher than 20% is achieved. The proposed scheme provides an alternative approach for high-performance sensing applications using FR.

NANO ◽  
2019 ◽  
Vol 14 (06) ◽  
pp. 1950071
Author(s):  
Haiwei Mu ◽  
Jianxin Wang ◽  
Qiang Liu ◽  
Wei Liu ◽  
Xianli Li ◽  
...  

The extinction spectral properties based on localized surface plasmon resonance (LSPR) of the concentric dual-ring nanodisk (CDRN) structure are investigated by discrete dipole approximation (DDA) and plasmon hybridization theory. The CDRN nanostructure shows flexible tunable multipole resonances in the near-infrared regime and the coupled resonance wavelengths depend on the structural parameters of the nanostructure, which has great potential in multichannel LSPR-based bio-sensing applications.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1325 ◽  
Author(s):  
Ru-Jing Sun ◽  
Hung Ji Huang ◽  
Chien-Nan Hsiao ◽  
Yu-Wei Lin ◽  
Bo-Huei Liao ◽  
...  

A TiN-based substrate with high reusability presented high-sensitivity refractive index measurements in a home-built surface plasmon resonance (SPR) heterodyne phase interrogation system. TiN layers with and without additional inclined-deposited TiN (i-TiN) layers on glass substrates reached high bulk charge carrier densities of 1.28 × 1022 and 1.91 × 1022 cm−3, respectively. The additional 1.4 nm i-TiN layer of the nanorod array presented a detection limit of 6.1 × 10−7 RIU and was higher than that of the 46 nm TiN layer at 1.2 × 10−6 RIU when measuring the refractive index of a glucose solution. Furthermore, the long-term durability of the TiN-based substrate demonstrated by multiple processing experiments presented a high potential for various practical sensing applications.


2021 ◽  
Vol 11 (7) ◽  
pp. 2963
Author(s):  
Nur Alia Sheh Omar ◽  
Yap Wing Fen ◽  
Irmawati Ramli ◽  
Umi Zulaikha Mohd Azmi ◽  
Hazwani Suhaila Hashim ◽  
...  

A novel vanadium–cellulose composite thin film-based on angular interrogation surface plasmon resonance (SPR) sensor for ppb-level detection of Ni(II) ion was developed. Experimental results show that the sensor has a linear response to the Ni(II) ion concentrations in the range of 2–50 ppb with a determination coefficient (R2) of 0.9910. This SPR sensor can attain a maximum sensitivity (0.068° ppb−1), binding affinity constant (1.819 × 106 M−1), detection accuracy (0.3034 degree−1), and signal-to-noise-ratio (0.0276) for Ni(II) ion detection. The optical properties of thin-film targeting Ni(II) ions in different concentrations were obtained by fitting the SPR reflectance curves using the WinSpall program. All in all, the proposed Au/MPA/V–CNCs–CTA thin-film-based surface plasmon resonance sensor exhibits better sensing performance than the previous film-based sensor and demonstrates a wide and promising technology candidate for environmental monitoring applications in the future.


Sign in / Sign up

Export Citation Format

Share Document