scholarly journals Natural selection increases female fitness by reversing the exaggeration of a male sexually selected trait

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kensuke Okada ◽  
Masako Katsuki ◽  
Manmohan D. Sharma ◽  
Katsuya Kiyose ◽  
Tomokazu Seko ◽  
...  

AbstractTheory shows how sexual selection can exaggerate male traits beyond naturally selected optima and also how natural selection can ultimately halt trait elaboration. Empirical evidence supports this theory, but to our knowledge, there have been no experimental evolution studies directly testing this logic, and little examination of possible associated effects on female fitness. Here we use experimental evolution of replicate populations of broad-horned flour beetles to test for effects of sex-specific predation on an exaggerated sexually selected male trait (the mandibles), while also testing for effects on female lifetime reproductive success. We find that populations subjected to male-specific predation evolve smaller sexually selected mandibles and this indirectly increases female fitness, seemingly through intersexual genetic correlations we document. Predation solely on females has no effects. Our findings support fundamental theory, but also reveal unforseen outcomes—the indirect effect on females—when natural selection targets sex-limited sexually selected characters.

2020 ◽  
Author(s):  
Kensuke Okada ◽  
Masako Katsuki ◽  
Manmohan D. Sharma ◽  
Katsuya Kiyose ◽  
Tomokazu Seko ◽  
...  

AbstractTheory shows how sexual selection can exaggerate male traits beyond naturally selected optima and also how natural selection can ultimately halt trait elaboration. Empirical evidence supports this theory, but to date, there have been no experimental evolution studies directly testing this logic, and little examination of possible associated effects on female fitness. Here we used experimental evolution of replicate populations of broad-horned flour-beetles to test for evolutionary effects of sex-specific predation on an exaggerated sexually selected male trait, while also testing for effects on female lifetime reproductive success. We found that populations subjected to male-specific predation evolved smaller sexually selected traits and this indirectly increased female fitness, seemingly through intersexual genetic correlations we documented. Predation solely on females had no effects. Our findings support fundamental theory, but also reveal novel outcomes when natural selection targets sex-limited sexually selected characters.


2018 ◽  
Author(s):  
E. Noël ◽  
E. Fruitet ◽  
D. Lelaurin ◽  
N. Bonel ◽  
A. Ségard ◽  
...  

AbstractTheory and empirical data showed that two processes can boost selection against deleterious mutations, thus facilitating the purging of the mutation load: inbreeding, by exposing recessive deleterious alleles to selection in homozygous form, and sexual selection, by enhancing the relative reproductive success of males with small mutation loads. These processes tend to be mutually exclusive because sexual selection is reduced under mating systems that promote inbreeding, such as self-fertilization in hermaphrodites. We estimated the relative efficiency of inbreeding and sexual selection at purging the genetic load, using 50 generations of experimental evolution, in a hermaphroditic snail (Physa acuta). To this end, we generated lines that were exposed to various intensities of inbreeding, sexual selection (on the male function) and nonsexual selection (on the female function). We measured how these regimes affected the mutation load, quantified through the survival of outcrossed and selfed juveniles. We found that juvenile survival strongly decreased in outbred lines with reduced male selection, but not when female selection was relaxed, showing that male-specific sexual selection does purge deleterious mutations. However, in lines exposed to inbreeding, where sexual selection was also relaxed, survival did not decrease, and even increased for self-fertilized juveniles, showing that purging through inbreeding can compensate for the absence of sexual selection. Our results point to the further question of whether a mixed strategy combining the advantages of both mechanisms of genetic purging could be evolutionary stable.


2019 ◽  
Vol 30 (6) ◽  
pp. 1518-1521 ◽  
Author(s):  
David J Hosken ◽  
Alastair J Wilson

Abstract A key element at the heart of the Fisher–Lande–Kirkpatrick model of the sexual selection process is the genetic correlation between (male) trait and (female) preference. The strength of this association is critical in determining a population’s evolutionary trajectory, which is why estimating its magnitude is so important. In the Lande model, the trait-preference correlation is solely established and maintained by mate choice, and although it is unclear how exclusively mate choice does this in nature, the experimental designs typically employed to measure trait-preference genetic correlations could be systematically weakening estimates by not allowing free mate choice (similarly with husbandry practices). The precise impact of the problem is unknown, and possibly unknowable, but simple solutions can be applied to ensure the accuracy of trait-preference correlation estimates is maximized.


2017 ◽  
Vol 13 (10) ◽  
pp. 20170518 ◽  
Author(s):  
Julie Colpitts ◽  
Darla Williscroft ◽  
Harmandeep Singh Sekhon ◽  
Howard D. Rundle

There is a general expectation that sexual selection should align with natural selection to aid the purging of deleterious mutations, yet experiments comparing purging under monogamy versus polygamy have provided mixed results. Recent studies suggest that this may be because the simplified mating environments used in these studies reduce the benefit of sexual selection through males and hamper natural selection through females by increasing costs associated with sexual conflict. To test the effect of the physical mating environment on purging, we use experimental evolution in Drosophila melanogaster to track the frequency of four separate deleterious mutations in replicate populations that experience polygamy under either a simple or structurally complex mating arena while controlling for arena size. Consistent with past results suggesting a greater net benefit of polygamy in a complex environment, two of the mutations were purged significantly faster in this environment. The other two mutations showed no significant difference between environments.


Author(s):  
Michael Ruse

Charles Robert Darwin, the English naturalist, published On the Origin of Species in 1859 and the follow-up work The Descent of Man in 1871. In these works, he argued for his theory of evolution through natural selection, applying it to all organisms, living and dead, including our own species, Homo sapiens. Although controversial from the start, Darwin’s thinking was deeply embedded in the culture of his day, that of a middle-class Englishman. Evolution as such was an immediate success in scientific circles, but although the mechanism of selection had supporters in the scientific community (especially among those working with fast-breeding organisms), its real success was in the popular domain. Natural selection, and particularly the side mechanism of sexual selection, were known to all and popular themes in fiction and elsewhere.


2017 ◽  
Vol 284 (1858) ◽  
pp. 20170424 ◽  
Author(s):  
Li Yun ◽  
Patrick J. Chen ◽  
Amardeep Singh ◽  
Aneil F. Agrawal ◽  
Howard D. Rundle

Recent experiments indicate that male preferential harassment of high-quality females reduces the variance in female fitness, thereby weakening natural selection through females and hampering adaptation and purging. We propose that this phenomenon, which results from a combination of male choice and male-induced harm, should be mediated by the physical environment in which intersexual interactions occur. Using Drosophila melanogaster , we examined intersexual interactions in small and simple (standard fly vials) versus slightly more realistic (small cages with spatial structure) environments. We show that in these more realistic environments, sexual interactions are less frequent, are no longer biased towards high-quality females, and that overall male harm is reduced. Next, we examine the selective advantage of high- over low-quality females while manipulating the opportunity for male choice. Male choice weakens the viability advantage of high-quality females in the simple environment, consistent with previous work, but strengthens selection on females in the more realistic environment. Laboratory studies in simple environments have strongly shaped our understanding of sexual conflict but may provide biased insight. Our results suggest that the physical environment plays a key role in the evolutionary consequences of sexual interactions and ultimately the alignment of natural and sexual selection.


2018 ◽  
Author(s):  
Russell A. Ligon ◽  
Christopher D. Diaz ◽  
Janelle L. Morano ◽  
Jolyon Troscianko ◽  
Martin Stevens ◽  
...  

Ornaments used in courtship often vary wildly among species, reflecting the evolutionary interplay between mate preference functions and the constraints imposed by natural selection. Consequently, understanding the evolutionary dynamics responsible for ornament diversification has been a longstanding challenge in evolutionary biology. However, comparing radically different ornaments across species, as well as different classes of ornaments within species, is a profound challenge to understanding diversification of sexual signals. Using novel methods and a unique natural history dataset, we explore evolutionary patterns of ornament evolution in a group - the birds-of-paradise - exhibiting dramatic phenotypic diversification widely assumed to be driven by sexual selection. Rather than the tradeoff between ornament types originally envisioned by Darwin and Wallace, we found positive correlations among cross-modal (visual/acoustic) signals indicating functional integration of ornamental traits into a composite unit - the courtship phenotype. Furthermore, given the broad theoretical and empirical support for the idea that systemic robustness - functional overlap and interdependency - promotes evolutionary innovation, we posit that birds-of-paradise have radiated extensively through ornamental phenotype space as a consequence of the robustness in the courtship phenotype that we document at a phylogenetic scale. We suggest that the degree of robustness in courtship phenotypes among taxa can provide new insights into the relative influence of sexual and natural selection on phenotypic radiations.Author SummaryAnimals frequently vary widely in ornamentation, even among closely related species. Understanding the patterns that underlie this variation is a significant challenge, requiring comparisons among drastically different traits - like comparing apples to oranges. Here, we use novel analytical approaches to quantify variation in ornamental diversity and richness across the wildly divergent birds-of-paradise, a textbook example of how sexual selection can profoundly shape organismal phenotypes. We find that color and acoustic complexity, along with behavior and acoustic complexity, are positively correlated across evolutionary time-scales. Positive covariation among ornament classes suggests that selection is acting on correlated suites of traits - a composite courtship phenotype - and that this integration may be partially responsible for the extreme variation we see in birds-of-paradise.


Sign in / Sign up

Export Citation Format

Share Document