Activating Nickel Iron Layer Double Hydroxide for Alkaline Hydrogen Evolution Reaction and Overall Water Splitting by Electrodepositing Nickel Hydroxide

2021 ◽  
pp. 129608
Author(s):  
Noto Susanto Gultom ◽  
Hairus Abdullah ◽  
Chi-Ning Hsu ◽  
Dong-Hau Kuo
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


2020 ◽  
Vol 10 (13) ◽  
pp. 4184-4190 ◽  
Author(s):  
Xiao-Peng Li ◽  
Wen-Kai Han ◽  
Kang Xiao ◽  
Ting Ouyang ◽  
Nan Li ◽  
...  

NiFe-layered double hydroxide (NiFe LDH), as an efficient oxygen evolution reaction (OER) electrocatalyst, has emerged as a promising electrocatalyst for catalyzing overall water splitting in alkaline electrolyte.


Author(s):  
Arun Karmakar ◽  
Karthick Kannimuthu ◽  
S. Sam Sankar ◽  
K. Sangeetha ◽  
Ragunath Madhu ◽  
...  

In a search of alternates for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), out of various transition metal based electrocatalysts, layer double hydroxide (LDHs) based materials are attracted...


2021 ◽  
Author(s):  
Zihao Liu ◽  
Shifeng Li ◽  
Fangfang Wang ◽  
Mingxia Li ◽  
Yonghong Ni

FeNi-layered double hydroxide (LDH) is thought to be an excellent electrocatalyst for oxygen evolution reaction (OER), but it always shows extremely poor electrocatalytic activity toward hydrogen evolution reaction (HER) in...


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46286-46296 ◽  
Author(s):  
Nan Zhang ◽  
Junyu Lei ◽  
Jianpeng Xie ◽  
Haiyan Huang ◽  
Ying Yu

A novel 3D hierarchical bifunctional catalytic electrode, MoS2/Ni3S2 nanorod arrays well-aligned on NF exhibited excellent electrocatalytic efficiency for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting.


Nanoscale ◽  
2019 ◽  
Vol 11 (42) ◽  
pp. 20228-20237 ◽  
Author(s):  
Xiaopei Xu ◽  
Haoxiang Xu ◽  
Daojian Cheng

MoS2 edges exhibit good hydrogen evolution reaction (HER) activity but poor oxygen evolution reaction (OER) activity.


2019 ◽  
Vol 7 (28) ◽  
pp. 16859-16866 ◽  
Author(s):  
Shan-Shan Lu ◽  
Li-Ming Zhang ◽  
Yi-Wen Dong ◽  
Jia-Qi Zhang ◽  
Xin-Tong Yan ◽  
...  

The design of electrocatalysts including precious and nonprecious metals for the hydrogen evolution reaction (HER) in alkaline media remains challenging due to the sluggish reaction kinetics caused by the additional water dissociation step.


Nanoscale ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 1390-1400 ◽  
Author(s):  
Jie Yin ◽  
Panpan Zhou ◽  
Li An ◽  
Liang Huang ◽  
Changwei Shao ◽  
...  

We employed an efficient route for the synthesis of self-supported nanoporous NiCo2O4nanowires with cobalt–nickel layered oxide nanosheets (CFP/NiCo2O4/Co0.57Ni0.43LMOs) which can be used as bifunctional catalysts in both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).


2018 ◽  
Vol 5 (10) ◽  
pp. 2425-2431 ◽  
Author(s):  
Zhaoqing Ding ◽  
Zhenghua Tang ◽  
Ligui Li ◽  
Kai Wang ◽  
Wen Wu ◽  
...  

Designing a highly active, robust and cost-effective electrocatalyst with multiple functionalities toward overall water splitting and rechargeable Zn–air battery applications is crucial and urgent for the development of sustainable energy sources.


Sign in / Sign up

Export Citation Format

Share Document