scholarly journals Publisher Correction: Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mugdha Sathe ◽  
Gayatri Muthukrishnan ◽  
James Rae ◽  
Andrea Disanza ◽  
Mukund Thattai ◽  
...  
2017 ◽  
Author(s):  
Mugdha Sathe ◽  
Gayatri Muthukrishnan ◽  
James Rae ◽  
Andrea Disanza ◽  
Mukund Thattai ◽  
...  

AbstractNumerous endocytic pathways operate simultaneously at the cell surface. Here we focus on the molecular machinery involved in the generation of endocytic vesicles of the clathrin and dynamin-independent CLIC/GEEC (CG) pathway. This pathway internalises many GPI-anchored proteins and a large fraction of the fluid-phase in different cell types. We developed a real-time TIRF assay using pH-sensitive GFP-GPI to identify nascent CG endocytic sites. The temporal profile of known CG pathway modulators showed that ARF1/GBF1 (GTPase/GEF pair) and CDC42 (RhoGTPase) are recruited sequentially to CG endocytic sites, ∼60s and ∼9s prior to scission. Using a limited RNAi screen, we found several BAR domain proteins affecting CG endocytosis and focused on IRSp53 and PICK1 that have interactions with CDC42 and ARF1 respectively. IRSp53, an I-BAR domain containing protein, was recruited to the plasma membrane at the site of forming CG endocytic vesicles and in its absence, nascent endocytic CLICs, did not form. The requirement for actin polymerization in the CG pathway suggested a role for nucleators of actin polymerization, and ARP2/3 was found enriched at the site of the forming endocytic vesicle. PICK1, a BAR domain containing protein and the ARP2/3 inhibitor is recruited at an early stage along with ARP2/3, but is removed from the endocytic site coincident with CDC42 recruitment and a burst of Factin polymerization. This study provides a spatio-temporal understanding of the molecular machinery necessary to build a CG endocytic vesicle.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Mugdha Sathe ◽  
Gayatri Muthukrishnan ◽  
James Rae ◽  
Andrea Disanza ◽  
Mukund Thattai ◽  
...  

2018 ◽  
Vol 218 (1) ◽  
pp. 97-111 ◽  
Author(s):  
Liang Wang ◽  
Ziyi Yan ◽  
Helena Vihinen ◽  
Ove Eriksson ◽  
Weihuan Wang ◽  
...  

Mitochondrial function is closely linked to its dynamic membrane ultrastructure. The mitochondrial inner membrane (MIM) can form extensive membrane invaginations known as cristae, which contain the respiratory chain and ATP synthase for oxidative phosphorylation. The molecular mechanisms regulating mitochondrial ultrastructure remain poorly understood. The Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of diverse cellular processes related to membrane remodeling and dynamics. Whether BAR domain proteins are involved in sculpting membranes in specific submitochondrial compartments is largely unknown. In this study, we report FAM92A1 as a novel BAR domain protein localizes to the matrix side of the MIM. Loss of FAM92A1 caused a severe disruption to mitochondrial morphology and ultrastructure, impairing organelle bioenergetics. Furthermore, FAM92A1 displayed a membrane-remodeling activity in vitro, inducing a high degree of membrane curvature. Collectively, our findings uncover a role for a BAR domain protein as a critical organizer of the mitochondrial ultrastructure that is indispensable for mitochondrial function.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Lili Lin ◽  
Xiaomin Chen ◽  
Ammarah Shabbir ◽  
Si Chen ◽  
Xuewen Chen ◽  
...  

Abstract Membrane remodeling modulates many biological processes. The binding of peripheral proteins to lipid membranes results in membrane invaginations and protrusions, which regulate essential intra-cellular membrane and extra-cellular trafficking events. Proteins that bind and re-shape bio-membranes have been identified and extensively investigated. The Bin/Amphiphysin/Rvs (BAR) domain proteins are crescent-shape and play a conserved role in tubulation and sculpturing of cell membranes. We deployed targeted gene replacement technique to functionally characterize two hypothetical proteins (MoBar-A and MoBar-B) containing unitary N-BAR domain in Magnaporthe oryzae. The results obtained from phenotypic examinations showed that MoBAR-A deletion exerted a significant reduction in the growth of the defective ∆Mobar-A strain. Also, MoBAR-A disruption exclusively compromised hyphae-mediated infection. Additionally, the targeted replacement of MoBAR-A suppressed the expression of genes associated with the formation of hyphae tip appressorium-like structure in M. oryzae. Furthermore, single as well as combined deletion of MoBAR-A and MoBAR-B down-regulated the expression of nine different membrane-associated genes. From these results, we inferred that MoBAR-A plays a key and unique role in the pathogenesis of M. oryzae through direct or indirect regulation of the development of appressorium-like structures developed by hyphae tip. Taken together, these results provide unique insights into the direct contribution of the N-BAR domain proteins to morphological, reproduction, and infectious development of M. oryzae.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zdenka Cicova ◽  
Mario Dejung ◽  
Tomas Skalicky ◽  
Nicole Eisenhuth ◽  
Steffen Hanselmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document