scholarly journals A scalable workflow to characterize the human exposome

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xin Hu ◽  
Douglas I. Walker ◽  
Yongliang Liang ◽  
Matthew Ryan Smith ◽  
Michael L. Orr ◽  
...  

AbstractComplementing the genome with an understanding of the human exposome is an important challenge for contemporary science and technology. Tens of thousands of chemicals are used in commerce, yet cost for targeted environmental chemical analysis limits surveillance to a few hundred known hazards. To overcome limitations which prevent scaling to thousands of chemicals, we develop a single-step express liquid extraction and gas chromatography high-resolution mass spectrometry analysis to operationalize the human exposome. We show that the workflow supports quantification of environmental chemicals in human plasma (200 µL) and tissue (≤100 mg) samples. The method also provides high resolution, sensitivity and selectivity for exposome epidemiology of mass spectral features without a priori knowledge of chemical identity. The simplicity of the method can facilitate harmonization of environmental biomonitoring between laboratories and enable population level human exposome research with limited sample volume.

2020 ◽  
Author(s):  
Xin Hu ◽  
Douglas Walker ◽  
YongLiang Liang ◽  
Matthew Smith ◽  
Michael Orr ◽  
...  

Abstract Complementing the genome with an understanding of the human exposome is an important challenge for contemporary science and technology. Tens of thousands of chemicals are used in commerce, yet cost for targeted environmental chemical analysis limits surveillance to a few hundred known hazards. To overcome limitations which prevent scaling to thousands of chemicals, we developed a single-step express liquid extraction (XLE), gas chromatography high-resolution mass spectrometry (GC-HRMS) analysis and computational pipeline to operationalize the human exposome. We show that the workflow supports quantification of environmental chemicals in small human plasma (200 µL) and tissue (≤ 100 mg) samples. The method also provides high resolution, sensitivity and selectivity for exposome epidemiology of mass spectral features without a priori knowledge of chemical identity. The simplicity of the method can facilitate harmonization of environmental biomonitoring between laboratories and enable population level human exposome research with limited sample volume.


Author(s):  
Andriy Rebryk ◽  
Peter Haglund

Abstract The health of key species in the Baltic region has been impaired by exposure to anthropogenic hazardous substances (AHSs), which accumulate in organisms and are transferred through food chains. There is, thus, a need for comprehensive characterization of the occurrence and accumulation of AHSs in the ecosystem. In this study, we use a non-target screening (NTS) approach for this purpose. A major challenge in NTS of biological samples is the removal of matrix components such as lipids that may interfere with the detection and identification of compounds of interest. Here, we combine gel permeation chromatography with Florisil® column fractionation to achieve sufficient lipid removal for gas chromatography–high-resolution mass spectrometry analysis using electron ionization (EI) and electron capture negative ion chemical ionization (ECNI). In addition, we present new data processing workflows designed to systematically find and identify frequently occurring and biomagnifying AHSs, including known, emerging, and new contaminants. Using these workflows, we discovered a wide range of contaminants in tissue samples from blue mussels, fish, and marine mammals, and calculated their biomagnification factors (BMFs). Compounds with BMFs above 1 for herring and at least one marine mammal included legacy chlorinated pollutants (polychlorinated biphenyls, DDTs, chloro-benzenes/cyclohexanes, chlordanes, toxaphenes, dieldrin), polybrominated diphenyl ethers (PBDEs), and brominated biphenyls. However, there were also several halogenated natural products (halogenated methoxylated brominated diphenyl ethers, 1′-methyl-1,2′-bipyrroles, 1,1′-dimethyl-2,2′-bipyrroles, and the halogenated monoterpene mixed halogenated compound 1) as well as the novel flame retardant Dechlorane 602 and several polycyclic aromatic hydrocarbons, terpenoids, and steroids. The legacy pollutants exhibited the expected biomagnification behavior, demonstrating the utility of the unguided data processing workflow.


2017 ◽  
Vol 63 (5) ◽  
pp. 1008-1021 ◽  
Author(s):  
Jeremy Carlier ◽  
Xingxing Diao ◽  
Karl B Scheidweiler ◽  
Marilyn A Huestis

Abstract BACKGROUND ADB-PINACA and its 5-fluoropentyl analog 5F-ADB-PINACA are among the most potent synthetic cannabinoids tested to date, with several severe intoxication cases. ADB-PINACA and 5F-ADB-PINACA have a different legal status, depending on the country. Synthetic cannabinoid metabolites predominate in urine, making detection of specific metabolites the most reliable way for proving intake in clinical and forensic specimens. However, there are currently no data on ADB-PINACA and 5F-PINACA metabolism. The substitution of a single fluorine atom distinguishes the 2 molecules, which may share common major metabolites. For some legal applications, distinguishing between ADB-PINACA and 5F-PINACA intake is critical. For this reason, we determined the human metabolic fate of the 2 analogs. METHODS ADB-PINACA and 5F-PINACA were incubated for 3 h with pooled cryopreserved human hepatocytes, followed by liquid chromatography—high-resolution mass spectrometry analysis. Data were processed with Compound Discoverer. RESULTS We identified 19 and 12 major ADB-PINACA and 5F-ADB-PINACA metabolites, respectively. Major metabolic reactions included pentyl hydroxylation, hydroxylation followed by oxidation (ketone formation), and glucuronidation of ADB-PINACA, and oxidative defluorination followed by carboxylation of 5F-ADB-PINACA. CONCLUSIONS We recommend ADB-PINACA ketopentyl and hydroxypentyl, and ADB-PINACA 5-hydroxypentyl and pentanoic acid, as optimal markers for ADB-PINACA and 5F-ADB-PINACA intake, respectively. Since the 2 compounds present positional isomers as the primary metabolites, monitoring unique product ions and optimized chromatographic conditions are required for a clear distinction between ADB-PINACA and 5F-ADB-PINACA intake.


Sign in / Sign up

Export Citation Format

Share Document