scholarly journals High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Sun ◽  
Vasily S. Minkov ◽  
Shirin Mozaffari ◽  
Ying Sun ◽  
Yanming Ma ◽  
...  

AbstractThe possibility of high, room-temperature superconductivity was predicted for metallic hydrogen in the 1960s. However, metallization and superconductivity of hydrogen are yet to be unambiguously demonstrated and may require pressures as high as 5 million atmospheres. Rare earth based “superhydrides”, such as LaH10, can be considered as a close approximation of metallic hydrogen even though they form at moderately lower pressures. In superhydrides the predominance of H-H metallic bonds and high superconducting transition temperatures bear the hallmarks of metallic hydrogen. Still, experimental studies revealing the key factors controlling their superconductivity are scarce. Here, we report the pressure and magnetic field dependence of the superconducting order observed in LaH10. We determine that the high-symmetry high-temperature superconducting Fm-3m phase of LaH10 can be stabilized at substantially lower pressures than previously thought. We find a remarkable correlation between superconductivity and a structural instability indicating that lattice vibrations, responsible for the monoclinic structural distortions in LaH10, strongly affect the superconducting coupling.

1992 ◽  
Vol 128 (1) ◽  
pp. 105-110 ◽  
Author(s):  
A. Bussmann-Holder ◽  
A. R. Bishop ◽  
A. Migliori ◽  
Z. Fisk

MRS Bulletin ◽  
1988 ◽  
Vol 13 (10) ◽  
pp. 56-61 ◽  
Author(s):  
H.J. Scheel ◽  
F. Licci

The discovery of high temperature superconductivity (HTSC) in oxide compounds has confronted materials scientists with many challenging problems. These include the preparation of ceramic samples with critical current density of about 106 A/cm2 at 77 K and sufficient mechanical strength for large-scale electrotechnical and magnetic applications and the preparation of epitaxial thin films of high structural perfection for electronic devices.The main interest in the growth of single crystals is for the study of physical phenomena, which will help achieve a theoretical understanding of HTSC. Theorists still do not agree on the fundamental mechanisms of HTSC, and there is a need for good data on relatively defect-free materials in order to test the many models. In addition, the study of the role of defects like twins, grain boundaries, and dislocations in single crystals is important for understanding such parameters as the critical current density. The study of HTSC with single crystals is also expected to be helpful for finding optimum materials for the various applications and hopefully achieving higher values of the superconducting transition temperature Tc than the current maximum of about 125 K. It seems unlikely at present that single crystals will be used in commercial devices, but this possibility cannot be ruled out as crystal size and quality improve.


2021 ◽  
Vol 118 (28) ◽  
pp. e2108938118
Author(s):  
Liangzi Deng ◽  
Trevor Bontke ◽  
Rabin Dahal ◽  
Yu Xie ◽  
Bin Gao ◽  
...  

To raise the superconducting-transition temperature (Tc) has been the driving force for the long-sustained effort in superconductivity research. Recent progress in hydrides with Tcs up to 287 K under pressure of 267 GPa has heralded a new era of room temperature superconductivity (RTS) with immense technological promise. Indeed, RTS will lift the temperature barrier for the ubiquitous application of superconductivity. Unfortunately, formidable pressure is required to attain such high Tcs. The most effective relief to this impasse is to remove the pressure needed while retaining the pressure-induced Tc without pressure. Here, we show such a possibility in the pure and doped high-temperature superconductor (HTS) FeSe by retaining, at ambient pressure via pressure quenching (PQ), its Tc up to 37 K (quadrupling that of a pristine FeSe at ambient) and other pressure-induced phases. We have also observed that some phases remain stable without pressure at up to 300 K and for at least 7 d. The observations are in qualitative agreement with our ab initio simulations using the solid-state nudged elastic band (SSNEB) method. We strongly believe that the PQ technique developed here can be adapted to the RTS hydrides and other materials of value with minimal effort.


1988 ◽  
Vol 02 (03n04) ◽  
pp. 435-441 ◽  
Author(s):  
N. G. SURESHA ◽  
S. HIGO ◽  
Y. HAKURAKU ◽  
T. OTAWA ◽  
Y. HONJO ◽  
...  

Results of the resistivity and magnetic susceptibility measurements for an oxide superconductor with nominal compositions of Y 1 Ba 2( Cu 1−x Nb x)3 O 6+δ and Y 0.4 Ba 0.6 ( Cu 1−x Nb x) O 2+δ where x = 0.1, 0.15, 0.2, are reported. Superconducting transition temperatures, T c onset (T co ) and T c final (T cf ) are above 90 K and 80 K respectively. We have observed a gradual change in the X-ray powder diffraction patterns of the samples with the change in x.


Sign in / Sign up

Export Citation Format

Share Document