scholarly journals Single-molecule imaging with cell-derived nanovesicles reveals early binding dynamics at a cyclic nucleotide-gated ion channel

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vishal R. Patel ◽  
Arturo M. Salinas ◽  
Darong Qi ◽  
Shipra Gupta ◽  
David J. Sidote ◽  
...  

AbstractLigand binding to membrane proteins is critical for many biological signaling processes. However, individual binding events are rarely directly observed, and their asynchronous dynamics are occluded in ensemble-averaged measures. For membrane proteins, single-molecule approaches that resolve these dynamics are challenged by dysfunction in non-native lipid environments, lack of access to intracellular sites, and costly sample preparation. Here, we introduce an approach combining cell-derived nanovesicles, microfluidics, and single-molecule fluorescence colocalization microscopy to track individual binding events at a cyclic nucleotide-gated TAX-4 ion channel critical for sensory transduction. Our observations reveal dynamics of both nucleotide binding and a subsequent conformational change likely preceding pore opening. Kinetic modeling suggests that binding of the second ligand is either independent of the first ligand or exhibits up to ~10-fold positive binding cooperativity. This approach is broadly applicable to studies of binding dynamics for proteins with extracellular or intracellular domains in native cell membrane.

2021 ◽  
Author(s):  
Vishal R Patel ◽  
Arturo M Salinas ◽  
Darong Qi ◽  
Shipra Gupta ◽  
David J Sidote ◽  
...  

Ligand binding to membrane proteins is critical for many biological signaling processes. However, individual binding events are rarely directly observed, and their asynchronous dynamics are occluded in ensemble-averaged measures. For membrane proteins, single-molecule approaches that resolve these dynamics are challenged by dysfunction in nonnative lipid environments, lack of access to intracellular sites, and costly sample preparation. Here, we introduce an approach combining cell-derived nanovesicles, microfluidics, and single-molecule fluorescence colocalization microscopy to track individual binding events at a cyclic nucleotide-gated TAX-4 ion channel critical for sensory transduction. Our observations reveal dynamics of both nucleotide binding and a subsequent conformational change likely preceding pore opening. We further show that binding of the second ligand in the tetrameric channel is less cooperative than previously estimated from ensemble-averaged binding measures. This approach is broadly applicable to studies of binding dynamics for proteins with extracellular or intracellular domains in native cell membrane.


Methods ◽  
2018 ◽  
Vol 147 ◽  
pp. 221-228 ◽  
Author(s):  
Oliver K. Castell ◽  
Patricia M. Dijkman ◽  
Daniel N. Wiseman ◽  
Alan D. Goddard

Author(s):  
Alyssa E. Ward ◽  
Yujie Ye ◽  
Jennifer A. Schuster ◽  
Shushu Wei ◽  
Francisco N. Barrera

The study of membrane proteins is undergoing a golden era, and we are gaining unprecedented knowledge on how this key group of proteins works. However, we still have only a basic understanding of how the chemical composition and the physical properties of lipid bilayers control the activity of membrane proteins. Single-molecule (SM) fluorescence methods can resolve sample heterogeneity, allowing to discriminate between the different molecular populations that biological systems often adopt. This short review highlights relevant examples of how SM fluorescence methodologies can illuminate the different ways in which lipids regulate the activity of membrane proteins. These studies are not limited to lipid molecules acting as ligands, but also consider how the physical properties of the bilayer can be determining factors on how membrane proteins function.


2019 ◽  
Author(s):  
Nicola Galvanetto ◽  
Sourav Maity ◽  
Nina Ilieva ◽  
Zhongjie Ye ◽  
Alessandro Laio ◽  
...  

AbstractIs the mechanical unfolding of proteins just a technological feat applicable only to synthetic preparations or can it provide useful information even for real biological samples? Here, we describe a pipeline for analyzing native membranes based on high throughput single-molecule force spectroscopy. The protocol includes a technique for the isolation of the plasma membrane of single cells. Afterwards, one harvests hundreds of thousands SMSF traces from the sample. Finally, one characterizes and identifies the embedded membrane proteins. This latter step is the cornerstone of our approach and involves combining, within a Bayesian framework, the information of the shape of the SMFS Force-distance which are observed more frequently, with the information from Mass Spectrometry and from proteomic databases (Uniprot, PDB). We applied this method to four cell types where we classified the unfolding of 5-10% of their total content of membrane proteins. The ability to mechanically probe membrane proteins directly in their native membrane enables the phenotyping of different cell types with almost single-cell level of resolution.


2001 ◽  
Vol 12 (4) ◽  
pp. 594-602 ◽  
Author(s):  
Tyler Lougheed ◽  
Vitali Borisenko ◽  
Christine E. Hand ◽  
G. Andrew Woolley

Author(s):  
Youzhong Guo

Membrane proteins play vital roles in living organisms, serving as targets for most currently prescribed drugs. Membrane protein structural biology aims to provide accurate structural information to understand their mechanisms of action. The advance of membrane protein structural biology has primarily relied on detergent-based methods over the past several decades. However, detergent-based approaches have significant drawbacks because detergents often damage the native protein–lipid interactions, which are often crucial for maintaining the natural structure and function of membrane proteins. Detergent-free methods recently have emerged as alternatives with a great promise, e.g. for high-resolution structure determinations of membrane proteins in their native cell membrane lipid environments. This minireview critically examines the current status of detergent-free methods by a comparative analysis of five groups of membrane protein structures determined using detergent-free and detergent-based methods. This analysis reveals that current detergent-free systems, such as the styrene-maleic acid lipid particles (SMALP), the diisobutyl maleic acid lipid particles (DIBMALP), and the cycloalkane-modified amphiphile polymer (CyclAPol) technologies are not better than detergent-based approaches in terms of maintenance of native cell membrane lipids on the transmembrane domain and high-resolution structure determination. However, another detergent-free technology, the native cell membrane nanoparticles (NCMN) system, demonstrated improved maintenance of native cell membrane lipids with the studied membrane proteins, and produced particles that were suitable for high-resolution structural analysis. The ongoing development of new membrane-active polymers and their optimization will facilitate the maturation of these new detergent-free systems.


Nano Letters ◽  
2017 ◽  
Vol 18 (1) ◽  
pp. 381-385 ◽  
Author(s):  
Anders Lundgren ◽  
Björn Johansson Fast ◽  
Stephan Block ◽  
Björn Agnarsson ◽  
Erik Reimhult ◽  
...  

2010 ◽  
Vol 38 (4) ◽  
pp. 914-918 ◽  
Author(s):  
Angel Orte ◽  
Richard Clarke ◽  
David Klenerman

Two-colour coincidence detection (TCCD) is a form of single-molecule fluorescence developed to sensitively detect and characterize associated biomolecules without any separation, in solution, on the cell membrane and in live cells. In the present short review, we first explain the principles of the method and then describe the application of TCCD to a range of biomedical problems and how this method may be developed further in the future to try to monitor biological processes in live cells.


Sign in / Sign up

Export Citation Format

Share Document