scholarly journals Molecular-scale investigation of the oxidation behavior of chromia-forming alloys in high-temperature CO2

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Richard P. Oleksak ◽  
Rafik Addou ◽  
Bharat Gwalani ◽  
John P. Baltrus ◽  
Tao Liu ◽  
...  

AbstractCurrent and future power systems require chromia-forming alloys compatible with high-temperature CO2. Important questions concerning the mechanisms of oxidation and carburization remain unanswered. Herein we shed light onto these processes by studying the very initial stages of oxidation of Fe22Cr and Fe22Ni22Cr model alloys. Ambient-pressure X-ray photoelectron spectroscopy enabled in situ analysis of the oxidizing surface under 1 mbar of flowing CO2 at temperatures up to 530 °C, while postexposure analyses revealed the structure and composition of the oxidized surface at the near-atomic scale. We found that gas purity played a critical role in the kinetics of the reaction, where high purity CO2 promoted the deposition of carbon and the selective oxidation of Cr. In contrast, no carbon deposition occurred in low purity CO2 and Fe oxidation ensued, thus highlighting the critical role of impurities in defining the early oxidation pathway of the alloy. The Cr-rich oxide formed on Fe22Cr in high purity CO2 was both thicker and more permeable to carbon compared to that formed on Fe22Ni22Cr, where carbon transport appeared to occur by atomic diffusion through the oxide. Alternatively, the Fe-rich oxide formed in low purity CO2 suggested carbon transport by molecular CO2.

2019 ◽  
Vol 180 ◽  
pp. 97-104 ◽  
Author(s):  
Ho Jae Lee ◽  
Kyu Hyoung Lee ◽  
Liangwei Fu ◽  
GyeongTak Han ◽  
Hyun-Sik Kim ◽  
...  

2017 ◽  
Vol 8 ◽  
pp. 2389-2395 ◽  
Author(s):  
Sumit Tewari ◽  
Koen M Bastiaans ◽  
Milan P Allan ◽  
Jan M van Ruitenbeek

Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.


Author(s):  
Rafikul Ali Saha ◽  
Anita Halder ◽  
Desheng Fu ◽  
Mitsuru Itoh ◽  
Tanusri Saha-Dasgupta ◽  
...  

2020 ◽  
Vol 216 ◽  
pp. 280-292 ◽  
Author(s):  
Xiaorui Dong ◽  
Erik Ninnemann ◽  
Duminda S. Ranasinghe ◽  
Andrew Laich ◽  
Robert Greene ◽  
...  

Author(s):  
Hye Soo Kim ◽  
Soyoung Kim ◽  
Jin Young Koo ◽  
Hee Cheul Choi

An efficient approach to obtaining high purity pentacene crystals via physical vapor transport process is reported, utilizing the physical properties of carrier gases.


Sign in / Sign up

Export Citation Format

Share Document