scholarly journals Entanglement formation in continuous-variable random quantum networks

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bingzhi Zhang ◽  
Quntao Zhuang

AbstractEntanglement is not only important for understanding the fundamental properties of many-body systems, but also the crucial resource enabling quantum advantages in practical information processing tasks. Although previous works on quantum networks focus on discrete-variable systems, light—as the only traveling carrier of quantum information in a network—is bosonic and thus requires a continuous-variable description. We extend the study to continuous-variable quantum networks. By mapping the ensemble-averaged entanglement dynamics on an arbitrary network to a random-walk process on a graph, we are able to exactly solve the entanglement dynamics. We identify squeezing as the source of entanglement generation, which triggers a diffusive spread of entanglement with a "parabolic light cone”. A surprising linear superposition law in the entanglement growth is predicted by the theory and numerically verified, despite the nonlinear nature of the entanglement dynamics. The equilibrium entanglement distribution (Page curves) is exactly solved and has various shapes depending on the average squeezing density and strength.

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 330
Author(s):  
Tyler J. Volkoff

We construct quantum coherence resource theories in symmetrized Fock space (QCRTF), thereby providing an information-theoretic framework that connects analyses of quantum coherence in discrete-variable (DV) and continuous variable (CV) bosonic systems. Unlike traditional quantum coherence resource theories, QCRTF can be made independent of the single-particle basis and allow to quantify coherence within and between particle number sectors. For example, QCRTF can be formulated in such a way that neither Bose-Einstein condensates nor Heisenberg-Weyl coherent states are considered as quantum many-body coherence resources, whereas spin-squeezed and quadrature squeezed states are. The QCRTF framework is utilized to calculate the optimal asymptotic distillation rate of maximally correlated bosonic states both for particle number conserving resource states and resource states of indefinite particle number. In particular, we show how to generate a uniform superposition of maximally correlated bosonic states from a state of maximal bosonic coherence with asymptotically unit efficiency using only free operations in the QCRTF.


2014 ◽  
Vol 89 (2) ◽  
Author(s):  
A. L. de Paula ◽  
J. G. G. de Oliveira ◽  
J. G. Peixoto de Faria ◽  
Dagoberto S. Freitas ◽  
M. C. Nemes

2008 ◽  
Vol 17 (supp01) ◽  
pp. 304-317
Author(s):  
Y. M. ZHAO

In this paper we review regularities of low-lying states for many-body systems, in particular, atomic nuclei, under random interactions. We shall discuss the famous problem of spin zero ground state dominance, positive parity dominance, collective motion, odd-even staggering, average energies, etc., in the presence of random interactions.


2021 ◽  
Vol 126 (11) ◽  
Author(s):  
Benjamin Geiger ◽  
Juan Diego Urbina ◽  
Klaus Richter
Keyword(s):  

2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Norifumi Matsumoto ◽  
Kohei Kawabata ◽  
Yuto Ashida ◽  
Shunsuke Furukawa ◽  
Masahito Ueda

2020 ◽  
Vol 6 (51) ◽  
pp. eabd4699
Author(s):  
Mingyuan He ◽  
Chenwei Lv ◽  
Hai-Qing Lin ◽  
Qi Zhou

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
T. M. Wintermantel ◽  
M. Buchhold ◽  
S. Shevate ◽  
M. Morgado ◽  
Y. Wang ◽  
...  

AbstractWhether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.


Sign in / Sign up

Export Citation Format

Share Document