scholarly journals Distillation of maximally correlated bosonic matter from many-body quantum coherence

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 330
Author(s):  
Tyler J. Volkoff

We construct quantum coherence resource theories in symmetrized Fock space (QCRTF), thereby providing an information-theoretic framework that connects analyses of quantum coherence in discrete-variable (DV) and continuous variable (CV) bosonic systems. Unlike traditional quantum coherence resource theories, QCRTF can be made independent of the single-particle basis and allow to quantify coherence within and between particle number sectors. For example, QCRTF can be formulated in such a way that neither Bose-Einstein condensates nor Heisenberg-Weyl coherent states are considered as quantum many-body coherence resources, whereas spin-squeezed and quadrature squeezed states are. The QCRTF framework is utilized to calculate the optimal asymptotic distillation rate of maximally correlated bosonic states both for particle number conserving resource states and resource states of indefinite particle number. In particular, we show how to generate a uniform superposition of maximally correlated bosonic states from a state of maximal bosonic coherence with asymptotically unit efficiency using only free operations in the QCRTF.

2001 ◽  
Vol 15 (10n11) ◽  
pp. 1305-1311 ◽  
Author(s):  
C. E. CAMPBELL ◽  
J. W. CLARK ◽  
E. KROTSCHECK ◽  
L. P. PITAEVSKII

The Eugene Feenberg Medal is awarded to Anthony J. Leggett in recognition of his seminal contributions to Many-Body Physics, including the explanation of the remarkable properties of superfluid 3 He in the millikelvin regime, important results in Fermi-liquid theory applied to metals, fundamental new insights into macroscopic quantum coherence, elucidation of key aspects of high-temperature superconductivity, and pioneering studies of the implications of Bose-Einstein condensation in atomic systems.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bingzhi Zhang ◽  
Quntao Zhuang

AbstractEntanglement is not only important for understanding the fundamental properties of many-body systems, but also the crucial resource enabling quantum advantages in practical information processing tasks. Although previous works on quantum networks focus on discrete-variable systems, light—as the only traveling carrier of quantum information in a network—is bosonic and thus requires a continuous-variable description. We extend the study to continuous-variable quantum networks. By mapping the ensemble-averaged entanglement dynamics on an arbitrary network to a random-walk process on a graph, we are able to exactly solve the entanglement dynamics. We identify squeezing as the source of entanglement generation, which triggers a diffusive spread of entanglement with a "parabolic light cone”. A surprising linear superposition law in the entanglement growth is predicted by the theory and numerically verified, despite the nonlinear nature of the entanglement dynamics. The equilibrium entanglement distribution (Page curves) is exactly solved and has various shapes depending on the average squeezing density and strength.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Filip Rozpędek ◽  
Kyungjoo Noh ◽  
Qian Xu ◽  
Saikat Guha ◽  
Liang Jiang

AbstractWe propose an architecture of quantum-error-correction-based quantum repeaters that combines techniques used in discrete- and continuous-variable quantum information. Specifically, we propose to encode the transmitted qubits in a concatenated code consisting of two levels. On the first level we use a continuous-variable GKP code encoding the qubit in a single bosonic mode. On the second level we use a small discrete-variable code. Such an architecture has two important features. Firstly, errors on each of the two levels are corrected in repeaters of two different types. This enables for achieving performance needed in practical scenarios with a reduced cost with respect to an architecture for which all repeaters are the same. Secondly, the use of continuous-variable GKP code on the lower level generates additional analog information which enhances the error-correcting capabilities of the second-level code such that long-distance communication becomes possible with encodings consisting of only four or seven optical modes.


2005 ◽  
Vol 72 (6) ◽  
Author(s):  
Thomas Gasenzer ◽  
Jürgen Berges ◽  
Michael G. Schmidt ◽  
Marcos Seco

Nanophotonics ◽  
2016 ◽  
Vol 5 (3) ◽  
pp. 469-482 ◽  
Author(s):  
Genta Masada ◽  
Akira Furusawa

AbstractEntanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.


Atoms ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Hiroyuki Tajima ◽  
Junichi Takahashi ◽  
Simeon Mistakidis ◽  
Eiji Nakano ◽  
Kei Iida

The notion of a polaron, originally introduced in the context of electrons in ionic lattices, helps us to understand how a quantum impurity behaves when being immersed in and interacting with a many-body background. We discuss the impact of the impurities on the medium particles by considering feedback effects from polarons that can be realized in ultracold quantum gas experiments. In particular, we exemplify the modifications of the medium in the presence of either Fermi or Bose polarons. Regarding Fermi polarons we present a corresponding many-body diagrammatic approach operating at finite temperatures and discuss how mediated two- and three-body interactions are implemented within this framework. Utilizing this approach, we analyze the behavior of the spectral function of Fermi polarons at finite temperature by varying impurity-medium interactions as well as spatial dimensions from three to one. Interestingly, we reveal that the spectral function of the medium atoms could be a useful quantity for analyzing the transition/crossover from attractive polarons to molecules in three-dimensions. As for the Bose polaron, we showcase the depletion of the background Bose-Einstein condensate in the vicinity of the impurity atom. Such spatial modulations would be important for future investigations regarding the quantification of interpolaron correlations in Bose polaron problems.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
N. T. Zinner

We consider finite-range effects when the scattering length goes to zero near a magnetically controlled Feshbach resonance. The traditional effective-range expansion is badly behaved at this point, and we therefore introduce an effective potential that reproduces the full T-matrix. To lowest order the effective potential goes as momentum squared times a factor that is well defined as the scattering length goes to zero. The potential turns out to be proportional to the background scattering length squared times the background effective range for the resonance. We proceed to estimate the applicability and relative importance of this potential for Bose-Einstein condensates and for two-component Fermi gases where the attractive nature of the effective potential can lead to collapse above a critical particle number or induce instability toward pairing and superfluidity. For broad Feshbach resonances the higher order effect is completely negligible. However, for narrow resonances in tightly confined samples signatures might be experimentally accessible. This could be relevant for suboptical wavelength microstructured traps at the interface of cold atoms and solid-state surfaces.


Sign in / Sign up

Export Citation Format

Share Document