scholarly journals Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kangkang Zha ◽  
Xu Li ◽  
Zhen Yang ◽  
Guangzhao Tian ◽  
Zhiqiang Sun ◽  
...  

AbstractArticular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Zayed ◽  
Steven Newby ◽  
Nabil Misk ◽  
Robert Donnell ◽  
Madhu Dhar

Horses are widely used as large animal preclinical models for cartilage repair studies, and hence, there is an interest in using equine synovial fluid-derived mesenchymal stem cells (SFMSCs) in research and clinical applications. Since, we have previously reported that similar to bone marrow-derived MSCs (BMMSCs), SFMSCs may also exhibit donor-to-donor variations in their stem cell properties; the current study was carried out as a proof-of-concept study, to compare the in vivo potential of equine BMMSCs and SFMSCs in articular cartilage repair. MSCs from these two sources were isolated from the same equine donor. In vitro analyses confirmed a significant increase in COMP expression in SFMSCs at day 14. The cells were then encapsulated in neutral agarose scaffold constructs and were implanted into two mm diameter full-thickness articular cartilage defect in trochlear grooves of the rat femur. MSCs were fluorescently labeled, and one week after treatment, the knee joints were evaluated for the presence of MSCs to the injured site and at 12 weeks were evaluated macroscopically, histologically, and then by immunofluorescence for healing of the defect. The macroscopic and histological evaluations showed better healing of the articular cartilage in the MSCs’ treated knee than in the control. Interestingly, SFMSC-treated knees showed a significantly higher Col II expression, suggesting the presence of hyaline cartilage in the healed defect. Data suggests that equine SFMSCs may be a viable option for treating osteochondral defects; however, their stem cell properties require prior testing before application.


2021 ◽  
Vol 22 (17) ◽  
pp. 9215
Author(s):  
Parviz Vahedi ◽  
Rana Moghaddamshahabi ◽  
Thomas J. Webster ◽  
Ayse Ceren Calikoglu Koyuncu ◽  
Elham Ahmadian ◽  
...  

Cartilage is frequently damaged with a limited capacity for repair. Current treatment strategies are insufficient as they form fibrocartilage as opposed to hyaline cartilage, and do not prevent the progression of degenerative changes. There is increasing interest in the use of autologous mesenchymal stem cells (MSC) for tissue regeneration. MSCs that are used to treat articular cartilage defects must not only present a robust cartilaginous production capacity, but they also must not cause morbidity at the harvest site. In addition, they should be easy to isolate from the tissue and expand in culture without terminal differentiation. The source of MSCs is one of the most important factors that may affect treatment. The infrapatellar fat pad (IPFP) acts as an important reservoir for MSC and is located in the anterior compartment of the knee joint in the extra-synovial area. The IPFP is a rich source of MSCs, and in this review, we discuss studies that demonstrate that these cells have shown many advantages over other tissues in terms of ease of isolation, expansion, and chondrogenic differentiation. Future studies in articular cartilage repair strategies and suitable extraction as well as cell culture methods will extend the therapeutical application of IPFP-derived MSCs into additional orthopedic fields, such as osteoarthritis. This review provides the latest research concerning the use of IPFP-derived MSCs in the treatment of articular cartilage damage, providing critical information for the field to grow.


2020 ◽  
Vol 48 (7) ◽  
pp. 1735-1747
Author(s):  
Yingnan Wu ◽  
Zheng Yang ◽  
Vinitha Denslin ◽  
XiaFei Ren ◽  
Chang Sheng Lee ◽  
...  

Background: Articular cartilage has a zonal architecture and biphasic mechanical properties. The recapitulation of surface lubrication properties with high compressibility of the deeper layers of articular cartilage during regeneration is essential in achieving long-term cartilage integrity. Current clinical approaches for cartilage repair, especially with the use of mesenchymal stem cells (MSCs), have yet to restore the hierarchically organized architecture of articular cartilage. Hypothesis: MSCs predifferentiated on surfaces with specific nanotopographic patterns can provide phenotypically stable and defined chondrogenic cells and, when delivered as a bilayered stratified construct at the cartilage defect site, will facilitate the formation of functionally superior cartilage tissue in vivo. Study Design: Controlled laboratory study. Methods: MSCs were subjected to chondrogenic differentiation on specific nanopatterned surfaces. The phenotype of the differentiated cells was assessed by the expression of cartilage markers. The ability of the 2-dimensional nanopattern-generated chondrogenic cells to retain their phenotypic characteristics after removal from the patterned surface was tested by subjecting the enzymatically harvested cells to 3-dimensional fibrin hydrogel culture. The in vivo efficacy in cartilage repair was demonstrated in an osteochondral rabbit defect model. Repair by bilayered construct with specific nanopattern predifferentiated cells was compared with implantation with cell-free fibrin hydrogel, undifferentiated MSCs, and mixed-phenotype nanopattern predifferentiated MSCs. Cartilage repair was evaluated at 12 weeks after implantation. Results: Three weeks of predifferentiation on 2-dimensional nanotopographic patterns was able to generate phenotypically stable chondrogenic cells. Implantation of nanopatterned differentiated MSCs as stratified bilayered hydrogel constructs improved the repair quality of cartilage defects, as indicated by histological scoring, mechanical properties, and polarized microscopy analysis. Conclusion: Our results indicate that with an appropriate period of differentiation, 2-dimensional nanotopographic patterns can be employed to generate phenotypically stable chondrogenic cells, which, when implanted as stratified bilayered hydrogel constructs, were able to form functionally superior cartilage tissue. Clinical Relevance: Our approach provides a relatively straightforward method of obtaining large quantities of zone-specific chondrocytes from MSCs to engineer a stratified cartilage construct that could recapitulate the zonal architecture of hyaline cartilage, and it represents a significant improvement in current MSC-based cartilage regeneration.


2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Francesco Perdisa ◽  
Natalia Gostyńska ◽  
Alice Roffi ◽  
Giuseppe Filardo ◽  
Maurilio Marcacci ◽  
...  

Among the current therapeutic approaches for the regeneration of damaged articular cartilage, none has yet proven to offer results comparable to those of native hyaline cartilage. Recently, it has been claimed that the use of mesenchymal stem cells (MSCs) provides greater regenerative potential than differentiated cells, such as chondrocytes. Among the different kinds of MSCs available, adipose-derived mesenchymal stem cells (ADSCs) are emerging due to their abundancy and easiness to harvest. However, their mechanism of action and potential for cartilage regeneration are still under investigation, and many other aspects still need to be clarified. The aim of this systematic review is to give an overview ofin vivostudies dealing with ADSCs, by summarizing the main evidence for the treatment of cartilage disease of the knee.


2020 ◽  
Vol 21 (6) ◽  
pp. 1967 ◽  
Author(s):  
Jae-Sung Ryu ◽  
Sang Young Seo ◽  
Eun-Jeong Jeong ◽  
Jong-Yeup Kim ◽  
Yong-Gon Koh ◽  
...  

Mesenchymal stem cells, also known as multipotent stromal progenitor cells, can differentiate into cells of mesodermal lineage. Gangliosides are sialic acid-conjugated glycosphingolipids that are believed to regulate cell differentiation and several signaling molecules. These molecules are localized in glycosphingolipid-enriched microdomains on the cell surface and are regulated by glycosphingolipid composition. Transforming growth factor-beta (TGF-β) signaling plays a critical role in chondrogenic differentiation. However, the role of gangliosides in chondrogenesis is not understood. In this study, the relationship between the ganglioside GM3 and TGF-β activation, during chondrogenic differentiation, was investigated using an aggregate culture of human synovial membrane-derived mesenchymal stem cells. We showed that the gangliosides GM3 and GD3 were expressed after the chondrogenic differentiation of hSMSC aggregates. To test whether GM3 affected the chondrogenic differentiation of hSMSC aggregates, we used GM3 treatment during chondrogenic differentiation. The results showed that the group treated with 5 μM GM3 had higher expression of chondrogenic specific markers, increased toluidine blue, and safranin O staining, and increased accumulation of glycosaminoglycans compared with the untreated group. Furthermore, GM3 treatment enhanced TGF-β signaling via SMAD 2/3 during the chondrogenic differentiation of hSMSC aggregates. Taken together, our results suggested that GM3 may be useful in developing therapeutic agents for cell-based articular cartilage regeneration in articular cartilage disease.


Sign in / Sign up

Export Citation Format

Share Document