scholarly journals The efficacy of chlorine-based disinfectants against planktonic and biofilm bacteria for decentralised point-of-use drinking water

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gillian E. Clayton ◽  
Robin M. S. Thorn ◽  
Darren M. Reynolds

AbstractChlorine solutions are used extensively for the production of biologically safe drinking water. The capability of point-of-use [POU] drinking water treatment systems has gained interest in locations where centralised treatment systems and distribution networks are not practical. This study investigated the antimicrobial and anti-biofilm activity of three chlorine-based disinfectants (hypochlorite ions [OCl-], hypochlorous acid [HOCl] and electrochemically activated solutions [ECAS]) for use in POU drinking water applications. The relative antimicrobial activity was compared within bactericidal suspension assays (BS EN 1040 and BS EN 1276) using Escherichia coli. The anti-biofilm activity was compared utilising established sessile Pseudomonas aeruginosa within a Centre for Disease Control [CDC] biofilm reactor. HOCl exhibited the greatest antimicrobial activity against planktonic E. coli at >50 mg L−1 free chlorine, in the presence of organic loading (bovine serum albumen). However, ECAS exhibited significantly greater anti-biofilm activity compared to OCl- and HOCl against P. aeruginosa biofilms at ≥50 mg L−1 free chlorine. Based on this evidence disinfectants where HOCl is the dominant chlorine species (HOCl and ECAS) would be appropriate alternative chlorine-based disinfectants for POU drinking water applications.

Author(s):  
Samuel Dorevitch ◽  
Kendall Anderson ◽  
Abhilasha Shrestha ◽  
Dorothy Wright ◽  
Aloyce Odhiambo ◽  
...  

Ozonation is widely used in high-income countries for water disinfection in centralized treatment facilities. New microplasma technology has reduced the energy requirements for ozone generation dramatically, such that a 15-watt solar panel is sufficient to produce small quantities of ozone. This technology has not been used previously for point-of-use drinking water treatment. We conducted a series of assessments of this technology, both in the laboratory and in homes of residents of a village in western Kenya, to estimate system efficacy and to determine if the solar-powered point-of-use water ozonation system appears safe and acceptable to end-users. In the laboratory, two hours of point-of-use ozonation reduced E. coli in 120 L of wastewater by a mean (standard deviation) of 2.3 (0.84) log-orders of magnitude and F+ coliphage by 1.54 (0.72). Based on laboratory efficacy, 10 families in Western Kenya used the system to treat 20 L of household stored water for two hours on a daily basis for eight weeks. Household stored water E. coli concentrations of >1000 most probable number (MPN)/100 mL were reduced by 1.56 (0.96) log removal value (LRV). No participants experienced symptoms of respiratory or mucous membrane irritation. Focus group research indicated that families who used the system for eight weeks had very favorable perceptions of the system, in part because it allowed them to charge mobile phones. Drinking water ozonation using microplasma technology may be a sustainable point-of-use treatment method, although system optimization and evaluations in other settings would be needed.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 521
Author(s):  
Fernando J. Beltrán ◽  
Ana Rey ◽  
Olga Gimeno

Formation of disinfection byproducts (DBPs) in drinking water treatment (DWT) as a result of pathogen removal has always been an issue of special attention in the preparation of safe water. DBPs are formed by the action of oxidant-disinfectant chemicals, mainly chlorine derivatives (chlorine, hypochlorous acid, chloramines, etc.), that react with natural organic matter (NOM), mainly humic substances. DBPs are usually refractory to oxidation, mainly due to the presence of halogen compounds so that advanced oxidation processes (AOPs) are a recommended option to deal with their removal. In this work, the application of catalytic ozonation processes (with and without the simultaneous presence of radiation), moderately recent AOPs, for the removal of humic substances (NOM), also called DBPs precursors, and DBPs themselves is reviewed. First, a short history about the use of disinfectants in DWT, DBPs formation discovery and alternative oxidants used is presented. Then, sections are dedicated to conventional AOPs applied to remove DBPs and their precursors to finalize with the description of principal research achievements found in the literature about application of catalytic ozonation processes. In this sense, aspects such as operating conditions, reactors used, radiation sources applied in their case, kinetics and mechanisms are reviewed.


2004 ◽  
Vol 50 (1) ◽  
pp. 83-90 ◽  
Author(s):  
M. Pryor ◽  
S. Springthorpe ◽  
S. Riffard ◽  
T. Brooks ◽  
Y. Huo ◽  
...  

Changing regulations to lower disinfectant byproducts in drinking water is forcing utilities to switch disinfection from chlorine to monochloramine. It is generally unknown whether this will impact positively or negatively on the microbiological quality of drinking water. A utility in Florida, using water with relatively high organic carbon levels from deep wells in several wellfields, made the decision to change its disinfection regime from chlorine to chloramine in order to meet the new regulations. To assess the impacts of such a change on the microbiology of its water supplies, it undertook a number of studies before and after the change. In particular, the presence of the opportunistic pathogens Legionella and Mycobacterium, and also the composition of drinking-water biofilms, were examined. A preliminary synthesis and summary of these results are presented here. Legionella species were widely distributed in source waters and in the distribution system when chlorine was the disinfectant. In some samples they seemed to be among the dominant biofilm bacteria. Following the change to monochloramine, legionellae were not detected in the distribution system during several months of survey; however, they remained detectable at point of use, although with less species diversity. A variety of mycobacteria (21 types) were widely distributed in the distribution system when chlorine was the disinfectant, but these seemed to increase in dominance after chloramination was instituted. At point of use, only four species of mycobacteria were detected. Other changes occurring with chloramination included (a) an altered biofilm composition, (b) increased numbers of total coliforms and heterotrophs and (c) nitrification of water storage tanks. The results suggested that consideration should be given to the microbiological effects of changing disinfection regimes in drinking-water and distribution system biofilms.


2001 ◽  
Vol 1 ◽  
pp. 39-43 ◽  
Author(s):  
V. Zitko

Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.


2019 ◽  
Vol 15 (1) ◽  
pp. 48-65 ◽  
Author(s):  
Stephen Siwila ◽  
Isobel C. Brink

Abstract A low-cost multi-barrier drinking water system incorporating geotextile fabric for pre-filtration, silver-coated ceramic granular media (SCCGM) for filtration and disinfection, granular activated carbon (GAC) as an adsorption media and a safe storage compartment for treated water has been developed and tested. The developed system offers a novel concept of point-of-use drinking water treatment in rural and suburban areas of developing countries. The system is primarily aimed at bacterial and aesthetic improvement and has been optimised to produce >99.99% E. coli and fecal coliforms removal. Although particular emphasis was placed on the elimination of bacteria, improvement of the acceptability aspects of water was also given high priority so that users are not motivated to use more appealing but potentially unsafe sources. This paper discusses key system features and contaminant removal performance. A system using SCCGM only was also tested alongside the multi-barrier system. Strengths and weaknesses of the system are also presented. Both the developed and SCCGM-only systems consistently provided >99.99% E. coli and fecal coliforms removal at an optimum flow of 2 L/h. The developed system significantly recorded improvements of aesthetic aspects (turbidity, color, taste and odor). Average turbidity removals were 99.2% and 90.2% by the multi-barrier and SCCGM-only systems respectively.


2018 ◽  
Author(s):  
Benjamin W. Lykins ◽  
Robert M. Clark ◽  
James A. Goodrich

Sign in / Sign up

Export Citation Format

Share Document