scholarly journals Climate mitigation scenarios with persistent COVID-19-related energy demand changes

Nature Energy ◽  
2021 ◽  
Author(s):  
Jarmo S. Kikstra ◽  
Adriano Vinca ◽  
Francesco Lovat ◽  
Benigna Boza-Kiss ◽  
Bas van Ruijven ◽  
...  
2020 ◽  
Vol 163 (3) ◽  
pp. 1639-1658 ◽  
Author(s):  
Vassilis Daioglou ◽  
Matteo Muratori ◽  
Patrick Lamers ◽  
Shinichiro Fujimori ◽  
Alban Kitous ◽  
...  

AbstractMost climate change mitigation scenarios rely on increased use of bioenergy to decarbonize the energy system. Here we use results from the 33rd Energy Modeling Forum study (EMF-33) to investigate projected international bioenergy trade for different integrated assessment models across several climate change mitigation scenarios. Results show that in scenarios with no climate policy, international bioenergy trade is likely to increase over time, and becomes even more important when climate targets are set. More stringent climate targets, however, do not necessarily imply greater bioenergy trade compared to weaker targets, as final energy demand may be reduced. However, the scaling up of bioenergy trade happens sooner and at a faster rate with increasing climate target stringency. Across models, for a scenario likely to achieve a 2 °C target, 10–45 EJ/year out of a total global bioenergy consumption of 72–214 EJ/year are expected to be traded across nine world regions by 2050. While this projection is greater than the present trade volumes of coal or natural gas, it remains below the present trade of crude oil. This growth in bioenergy trade largely replaces the trade in fossil fuels (especially oil) which is projected to decrease significantly over the twenty-first century. As climate change mitigation scenarios often show diversified energy systems, in which numerous world regions can act as bioenergy suppliers, the projections do not necessarily lead to energy security concerns. Nonetheless, rapid growth in the trade of bioenergy is projected in strict climate mitigation scenarios, raising questions about infrastructure, logistics, financing options, and global standards for bioenergy production and trade.


2021 ◽  
Vol 139 ◽  
pp. 105001 ◽  
Author(s):  
Yiyi Ju ◽  
Masahiro Sugiyama ◽  
Diego Silva Herran ◽  
Jiayang Wang ◽  
Akimitsu Inoue

AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1170-1191
Author(s):  
Peter Schwartzman ◽  
◽  
David Schwartzman ◽  

<abstract> <p>First, we recognize the valuable previous studies which model renewable energy growth with complete termination of fossil fuels along with assumptions of the remaining carbon budgets to reach IPCC warming targets. However, these studies use very complex combined economic/physical modeling and commonly lack transparency regarding the sensitivity to assumed inputs. Moreover, it is not clear that energy poverty with its big present impact in the global South has been eliminated in their scenarios. Further, their CO<sub>2</sub>-equivalent natural gas emission factors are underestimated, which will have significant impact on the computed greenhouse gas emissions. Therefore, we address this question in a transparent modeling study: can the 1.5 ℃ warming target still be met with an aggressive phaseout of fossil fuels coupled with a 100% replacement by renewable energy? We compute the continuous generation of global wind/solar energy power along with the cumulative carbon dioxide equivalent emissions in a complete phaseout of fossil fuels over a 20 year period. We compare these computed emissions with the state-of-the-science estimates for the remaining carbon budget of carbon dioxide emissions consistent with the 1.5 ℃ warming target, concluding that it is still possible to meet this warming target if the creation of a global 100% renewable energy transition of sufficient capacity begins very soon which will likely be needed to power aggressive negative carbon emission technology. The latter is focused on direct air capture for crustal storage. More efficient renewable technologies in the near future will make this transition easier and promote the implementation of a global circular economy. Taking into account technological improvements in 2<sup>nd</sup> law (exergy) efficiencies reducing the necessary global energy demand, the renewable supply should likely be no more than 1.5 times the present level, with the capacity to eliminate global energy poverty, for climate mitigation and adaptation.</p> </abstract>


Sign in / Sign up

Export Citation Format

Share Document