scholarly journals Can the 1.5 ℃ warming target be met in a global transition to 100% renewable energy?

AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1170-1191
Author(s):  
Peter Schwartzman ◽  
◽  
David Schwartzman ◽  

<abstract> <p>First, we recognize the valuable previous studies which model renewable energy growth with complete termination of fossil fuels along with assumptions of the remaining carbon budgets to reach IPCC warming targets. However, these studies use very complex combined economic/physical modeling and commonly lack transparency regarding the sensitivity to assumed inputs. Moreover, it is not clear that energy poverty with its big present impact in the global South has been eliminated in their scenarios. Further, their CO<sub>2</sub>-equivalent natural gas emission factors are underestimated, which will have significant impact on the computed greenhouse gas emissions. Therefore, we address this question in a transparent modeling study: can the 1.5 ℃ warming target still be met with an aggressive phaseout of fossil fuels coupled with a 100% replacement by renewable energy? We compute the continuous generation of global wind/solar energy power along with the cumulative carbon dioxide equivalent emissions in a complete phaseout of fossil fuels over a 20 year period. We compare these computed emissions with the state-of-the-science estimates for the remaining carbon budget of carbon dioxide emissions consistent with the 1.5 ℃ warming target, concluding that it is still possible to meet this warming target if the creation of a global 100% renewable energy transition of sufficient capacity begins very soon which will likely be needed to power aggressive negative carbon emission technology. The latter is focused on direct air capture for crustal storage. More efficient renewable technologies in the near future will make this transition easier and promote the implementation of a global circular economy. Taking into account technological improvements in 2<sup>nd</sup> law (exergy) efficiencies reducing the necessary global energy demand, the renewable supply should likely be no more than 1.5 times the present level, with the capacity to eliminate global energy poverty, for climate mitigation and adaptation.</p> </abstract>

2021 ◽  
Author(s):  
David Schwartzman ◽  
Peter Schwartzman

&lt;p&gt;Can the 1.5 deg C warming target still be met with an aggressive phaseout of fossil fuels coupled with a 100% replacement by renewable energy?&amp;#160;&amp;#160;We address this question in our modeling study by computing the continuous generation of global wind/solar energy power along with the cumulative carbon dioxide equivalent emissions&amp;#160;in a complete phaseout of fossil fuels over a 20 year period. We assume a baseline of energy status at 2018, as well as the EROI of currently available wind/solar energy technologies.&amp;#160;&amp;#160;We compare these computed emissions with the state-of-the-science estimates for the remaining carbon budget of carbon dioxide emissions consistent with the 1.5 deg C warming target. Our conclusion is that it is still possible to meet this warming target if the creation of a global 100% renewable energy transition of sufficient capacity begins very soon, coupled with aggressive negative carbon emissions. The latter technology uses a fraction of total renewable energy delivery for direct air capture for permanent crustal storage over the last ten years of this energy transition that is compatible for simulations with no more than 10 to 15 % reinvestment of renewable energy to make more of itself. More efficient renewable technologies in the near future will make this transition easier.&amp;#160;&amp;#160;The maximum amount of fossil fuel consumed in our scenarios for the complete transition is no more than 5% of the proven reserves of coal, natural gas and oil as currently estimated.&amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1570
Author(s):  
Leanda C. Garvie ◽  
Stephen H. Roxburgh ◽  
Fabiano A. Ximenes

Harnessing sustainably sourced forest biomass for renewable energy is well-established in some parts of the developed world. Forest-based bioenergy has the potential to offset carbon dioxide emissions from fossil fuels, thereby playing a role in climate change mitigation. Despite having an established commercial forestry industry, with large quantities of residue generated each year, there is limited use for forest biomass for renewable energy in Queensland, and Australia more broadly. The objective of this study was to identify the carbon dioxide mitigation potential of replacing fossil fuels with bioenergy generated from forest harvest residues harnessed from commercial plantations of Pinus species in southeast Queensland. An empirical-based full carbon accounting model (FullCAM) was used to simulate the accumulation of carbon in harvest residues. The results from the FullCAM modelling were further analysed to identify the energy substitution and greenhouse gas (GHG) emissions offsets of three bioenergy scenarios. The results of the analysis suggest that the greatest opportunity to avoid or offset emissions is achieved when combined heat and power using residue feedstocks replaces coal-fired electricity. The results of this study suggest that forest residue bioenergy is a viable alternative to traditional energy sources, offering substantive emission reductions, with the potential to contribute towards renewable energy and emission reduction targets in Queensland. The approach used in this case study will be valuable to other regions exploring bioenergy generation from forest or other biomass residues.


2019 ◽  
Vol 12 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Lyheang Chhay ◽  
Bundit Limmeechokchai

Background: The drastically increasing share of fossil fuel supply to meet the rapidly growing electricity demand resulting in increasing Carbon dioxide (CO2) emissions, is the major concern in Thailand. In 2015, fossil fuels used in electricity generation in Thailand accounted for around 85.3% of the total electricity generation. Aim: The aim of the study is to analyze carbon dioxide mitigation options under the cleaner supply-side option beyond the Intended Nationally Determined Contribution (INDC) of Thailand. Methods: In this study, the Long-range Energy Planning (LEAP) model is used to analyze the share of electricity generation and CO2 mitigation from four main different scenarios, namely Business-as-Usual (BAU), Renewable Energy (RE), Carbon Capture Storage (CCS), and Carbon Tax (CT) scenarios during 2015 to 2050. The BAU scenario is constructed following the power development targets of the Power Development Plan in 2015. Results: The results illustrate that in the BAU scenario, electricity generation and carbon dioxide emissions from the power sector will increase by 57.7% and 37.3%, respectively in 2050 as compared to 2015. The imposition of carbon tax of $20/tCO2 from 2020 and an increase to $500/t CO2 by 2050 will have a high potential to reduce CO2 emissions from the power sector as compared with other scenarios. Conclusion: Results show that except for the RE scenarios considering the lower share of solar and biomass, all scenarios would help Thailand in achieving the target of INDC by 2030. Results provide that the share of imported electricity is higher with the imposition of carbon tax as compared to the scenarios with the promotion of renewable energy, CCS and EV technology.


Author(s):  
Sybille Roehrkasten

This chapter examines global energy trends, whether a global renewable energy transition is already taking place, and what steps are needed to further accelerate the global deployment of renewables. It first considers the expansion of renewable energy in light of global energy trends, noting that a global energy transition is not yet a reality but is urgently needed. It then looks at drivers and barriers for an accelerated expansion of renewable energy and proceeds by discussing how renewables are moving from the sidelines to the center stage of global energy governance. In particular, it describes the politics behind the creation of the International Renewable Energy Agency (IRENA), an intergovernmental organization on renewable energy, as well as current challenges for global governance on renewable energy. The chapter shows that global renewable energy capacities have grown significantly but that global energy supply is still dominated by fossil fuels.


Author(s):  
Carlos Germán Meza ◽  
Nilton Bispo Amado ◽  
Ildo Sauer

The measures for tackling the COVID-19 may shrink the global GDP by approximately 6% in 2020, the deepest post-war recession. As a result, the global energy demand declined by 3.8% in the first quarter of 2020. Concerning fossil fuels, this conjuncture reduced the demand drastically and collapsed the prices to historic levels. Despite the general market disruptions, renewable energy sources (RES) seem to be more resilient to the crisis because they are the only sources that will grow in demand in 2020, driven by priority dispatch. The RES&acute;s significant growth in cumulative installed capacity in the last two decades and the significant cost reductions of RES and energy storage technologies are positive signs towards better market conditions for the global energy transition. Currently, the crisis is seen by international agencies and transition scholars as an opportunity to advance a renewable-based energy transformation. Nevertheless, this article aims at caution about another possibility: if societal changes are not urgently implemented, the crisis may weaken the global energy transition. This article examines this last possibility from a three-level perspective: 1) post-COVID economic recovery, 2) low oil and natural gas prices and competitiveness of alternative sources and, 3) reorganization of the world energy market and the OPEC+. This paper exists to stimulate debate.


2020 ◽  
Author(s):  
Adriaan Smuts Van Niekerk ◽  
Peter Kay

Reduction in fossil fuels, contributing to greenhouse gases, and improvement of air quality from vehicle emissions is of growing concern worldwide. This has led to the introduction of several binding and non-binding agreements, such as the Renewable Energy Directive to increase the renewable content of fuel for transportation, the carbon dioxide emissions standards to limit the amount of carbon dioxide emissions from vehicles and the Euro Standards to limit the amount of emissions harmful to human health in the exhaust. However, the influence of the fuel composition on hazardous exhaust emissions is a complex, and often contradictory, relationship between factors such as the fuel properties, combustion characteristics and engine load. Therefore policy implemented to improve one aspect, such as a reduction in carbon dioxide, can have a detrimental effect on another such as increased NOx emissions.This paper analyses, in a holistic manner, the impact on carbon dioxide and harmful emissions from transient compression ignition engines when increasing the renewable content of the fuel to meet the renewable energy targets. The analysis is based on a model developed from a rigorous Design of Experiment methodology used to determine the complex relationship between renewable fuel content and exhaust emissions (carbon monoxide, carbon dioxide and nitrogen oxides). Unlike other studies, the results were collected from a transient engine cycle, the World Harmonised Light vehicle Test Procedure, rather than steady state conditions, thus the results are more applicable to the real world.The results generally show that as the amount of ethanol is increased then the NOx and CO emissions decrease compared to current pump diesel. Increasing the biodiesel content generally increases the CO and CO2 emissions from the engine. For practical reasons a ternary blend is required to minimise the diesel engine emissions whilst meeting the UK’s future renewable content target. A blend of B2.4E10 was found to be the optimum compromise between renewable content and engine emissions. However, for this to be achieved the UK will have to invest in second and third generation ethanol.


2020 ◽  
Vol 10 (4) ◽  
pp. 5780-5786 ◽  

With increasing global energy demand and lower energy efficiency for inverted energy (EROEI) for crude oil, global energy consumption by the O&G industry has increased dramatically in recent years. Moreover, this increased energy has led to an increase in greenhouse gas emissions, which has had negative environmental impacts. On the other hand, generating electricity through renewable resources has become a relatively competitive cost for fossil energy sources in a "cleaner" way. In this study, renewable energy is optimally combined into the refinery, taking into account costs and carbon dioxide emissions. Using Aspen HYSYS, a refinery in the Middle East was stimulated to estimate energy demand by different processing units. The L.P. problem is formulated based on the existing solar energy systems and wind potential in the region. The multipurpose function, which reduces cost and CO2 emissions, was resolved using GAMS to determine the optimum energy distribution from each power source to units inside the refinery. Besides, an economic feasibility study was conducted to determine the feasibility of implementing a renewable energy technology project to bypass the refinery's energy requirements. Electricity generation through all renewable energy sources considered (i.e., solar P.V., CSP, and wind) was considered feasible based on the low cost of electricity (LCOE). The payback period for the CSP project, which has an annual capacity of about 411 GWh and a useful life of 30 years, was ten years. In contrast, the solar P.V. and wind recovery periods were calculated at 7 and 6 years, respectively. This opens up possibilities for incorporating renewable energy into the refining sector, as well as for improving multiple energy transmission systems in the crude oil industry.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2354
Author(s):  
Younes Zahraoui ◽  
M. Reyasudin Basir Khan ◽  
Ibrahim AlHamrouni ◽  
Saad Mekhilef ◽  
Mahrous Ahmed

Energy demand has been overgrowing in developing countries. Moreover, the fluctuation of fuel prices is a primary concern faced by many countries that highly rely on conventional power generation to meet the load demand. Hence, the need to use alternative resources, such as renewable energy, is crucial in order to mitigate fossil fuel dependency, while ensuring reductions in carbon dioxide emissions. Algeria—being the largest county in Africa—has experienced a rapid growth in energy demand over the past decade due to the significant increase in residential, commercial, and industry sectors. Currently, the hydrocarbon-rich nation is highly dependent on fossil fuels for electricity generation, with renewable energy only having a small contribution to the country’s energy mix. However, the country has massive potential for renewable energy generation, such as solar, wind, biomass, geothermal, and hydropower. Therefore, the government aims to diversify away from fossil fuels and promote renewable energy generation through policies and renewable energy-related programs. The country’s Renewable Energy and Energy Efficiency Development Plan focuses on large scale solar, wind generation as well as geothermal and biomass technologies. This paper provides an update on the current energy position and renewable energy status in Algeria. Moreover, this paper discusses renewable energy (RE) policies and programs that aim to increase the country’s renewable energy generation and its implementation status.


CFD Letters ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 95-115
Author(s):  
Aditya Agung Haripriyono ◽  
Yaseen Adnan Ahmed ◽  
Mohammed Abdul Hannan

The use of fossil fuels on commercial ships significantly contributes to the increase of carbon dioxide emission, and adaptation of renewable energy can help control that emission efficiently. Historically, the extraction of wind energy is found to be the best renewable energy solution for commercial ships; and recently, with renewed interest in this area, various wind energy extraction devices are proposed in the literature. This study investigates the effectiveness of one such technology, wing-sail, on a tanker ship. The NACA 4412 series is adopted to design the sail in this regard, and a fowler flap is added to aid the sail in low wind speed. ANSYS Fluent is used to carry out this CFD simulation-based study. The effects of onboard wing-sails under various apparent wind angles, wind speeds, and wing-sail orientations have been examined. The impact of wing-sail on the stability of the ship is also analyzed. It is concluded that the ship can save fuel and reduce carbon dioxide emissions by 1.8% to 2.4% while using the wing-sail with the aid of a fowler flap. Also, this combination of wing-sail with the fowler flap is found to be the best in providing extra thrust for commercial ships without significantly sacrificing its stability.


2020 ◽  
Vol 12 (12) ◽  
pp. 4921 ◽  
Author(s):  
Abdelrahman Azzuni ◽  
Arman Aghahosseini ◽  
Manish Ram ◽  
Dmitrii Bogdanov ◽  
Upeksha Caldera ◽  
...  

Energy security analysis is a strong tool for policy makers. It allows them to formulate policies that would enhance energy systems by targeting necessary actions. In this study, the impacts of transitioning from a fossil fuels to a renewables dominated energy system on energy security is analysed for Jordan. A Best Policy Scenario was developed for the Jordanian energy system to trace the transition to a 100% renewable energy system. Energy security was analysed for the future system by a qualitative approach utilising colour codes. The results reveal that the primary energy demand increases from 64 TWh in 2015 to 130 TWh in 2050, dominated by electricity and followed by heat and bioenergy. This indicates that a high level of direct and indirect electrification is the key to transition towards a fully sustainable energy system. Renewable electricity generation is projected to increase from 0.1 TWh in 2015 to 110.7 TWh in 2050, with a solar photovoltaic share of 92%. The levelised cost of energy develops from 78 €/MWh in 2015 to 61 €/MWh in 2050. In 2050, this system will have zero greenhouse gas emissions, it will provide plenty of job opportunities and revenue generation. This proposed transition will enhance the energy security level of the Jordanian energy system in five of the six dimensions studied. The five dimensions that will be improved are availability, cost, environment, health, and employment, whereas the dimension on diversity will stay neutral. It can be concluded that Jordan can achieve a 100% renewable energy system by 2050 and such a transition will enhance the energy security level.


Sign in / Sign up

Export Citation Format

Share Document