scholarly journals Reconciling age-related changes in behavioural and neural indices of human perceptual decision-making

2018 ◽  
Vol 2 (12) ◽  
pp. 955-966 ◽  
Author(s):  
David P. McGovern ◽  
Aoife Hayes ◽  
Simon P. Kelly ◽  
Redmond G. O’Connell
2020 ◽  
Vol 20 (11) ◽  
pp. 109
Author(s):  
Catherine Manning ◽  
Udo Boehm ◽  
Gaia Scerif ◽  
Anthony M Norcia ◽  
Eric-Jan Wagenmakers

Author(s):  
Victoria A. Spaulding ◽  
Donita A. Phipps

Younger and older participants were trained to perform a computerized football task. Half of the participants received rule-based training and the remainder received color enhancements in alternating blocks. Both younger and older adults improved RT performance, with the younger participants performing about twice as fast as the older participants. The participants transferred to Novel, Cluttered and Time-Stress conditions. The effect of training type (rules better than enhancements) failed to persist during transfer. Age-related impairments of RT and overall accuracy persisted during transfer, although older participants maintained a higher primary accuracy (except for Time-Stress). Their performance plummeted during the Time-Stress, but improved across the blocks. During the subsequent baseline block, primary accuracy returned to the pre-Cluttered level and RT slightly declined. These results suggest that the older participants changed strategies under time stress, and with more practice, their performance on this complex perceptual task may increase dramatically.


Author(s):  
Ana Gómez-Granados ◽  
Deborah A Barany ◽  
Margaret Schrayer ◽  
Isaac L. Kurtzer ◽  
Cédrick T Bonnet ◽  
...  

Many goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual decision-making are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in goal-directed actions. Previously, we have shown that in healthy adults, task demands influence movement strategies during visuomotor decision-making, reflecting differential integration of sensory information between the two streams. Here, we asked the question if older adults would exhibit larger declines in interactions between the two streams during demanding motor tasks. Older adults (n=15) and young controls (n=26) performed reaching or interception movements towards virtual objects. In some blocks of trials, participants also had to select an appropriate movement goal based on the shape of the object. Our results showed that older adults corrected fewer initial decision errors during both reaching and interception movements. During the interception decision task, older adults made more decision- and execution-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect impaired ventral-dorsal stream interactions.


Author(s):  
Catherine Manning ◽  
Eric-Jan Wagenmakers ◽  
Anthony M. Norcia ◽  
Gaia Scerif ◽  
Udo Boehm

2021 ◽  
Author(s):  
Ana Gómez-Granados ◽  
Deborah A. Barany ◽  
Margaret Schrayer ◽  
Isaac Kurtzer ◽  
Cédrick Bonnet ◽  
...  

AbstractMany goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual decision-making are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in goal-directed actions. Previously, we have shown that in healthy adults task demands affect the integration of sensory information between the two streams and more motorically demanding tasks induce earlier decisions and more decision errors. Here, we asked the question if older adults would exhibit larger declines in interactions between the two streams during demanding motor tasks. Older adults (n=15) and young controls (n=26) performed a simple reaching task and a more demanding interception task towards virtual objects. In some blocks of trials, participants also had to select an appropriate movement based on the shape of the object. Our results showed that older adults made a similar number of initial decision errors during both the reaching and interception tasks but corrected fewer of those errors during movement. During the more demanding interception decision task, older adults made more decision- and execution-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect impaired ventral-dorsal stream interactions.HighlightsOlder adults showed reduced performance in a visuomotor decision-making taskInitial decision errors were similar between young and older adultsOlder adults were less likely to correct initial decision errorsMore demanding movements were associated with earlier and less accurate decisions


2018 ◽  
Vol 41 ◽  
Author(s):  
Patrick Simen ◽  
Fuat Balcı

AbstractRahnev & Denison (R&D) argue against normative theories and in favor of a more descriptive “standard observer model” of perceptual decision making. We agree with the authors in many respects, but we argue that optimality (specifically, reward-rate maximization) has proved demonstrably useful as a hypothesis, contrary to the authors’ claims.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Genís Prat-Ortega ◽  
Klaus Wimmer ◽  
Alex Roxin ◽  
Jaime de la Rocha

AbstractPerceptual decisions rely on accumulating sensory evidence. This computation has been studied using either drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both models can account for a large amount of data, it remains unclear whether their dynamics are qualitatively equivalent. Here we show that in the attractor model, but not in the drift diffusion model, an increase in the stimulus fluctuations or the stimulus duration promotes transitions between decision states. The increase in the number of transitions leads to a crossover between weighting mostly early evidence (primacy) to weighting late evidence (recency), a prediction we validate with psychophysical data. Between these two limiting cases, we found a novel flexible categorization regime, in which fluctuations can reverse initially-incorrect categorizations. This reversal asymmetry results in a non-monotonic psychometric curve, a distinctive feature of the attractor model. Our findings point to correcting decision reversals as an important feature of perceptual decision making.


Mindfulness ◽  
2021 ◽  
Author(s):  
Sungjin Im ◽  
Maya A. Marder ◽  
Gabriella Imbriano ◽  
Tamara J. Sussman ◽  
Aprajita Mohanty

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


Sign in / Sign up

Export Citation Format

Share Document