scholarly journals Retinal innervation tunes circuits that drive nonphotic entrainment to food

Nature ◽  
2020 ◽  
Vol 581 (7807) ◽  
pp. 194-198 ◽  
Author(s):  
Diego Carlos Fernandez ◽  
Ruchi Komal ◽  
Jennifer Langel ◽  
Jun Ma ◽  
Phan Q. Duy ◽  
...  
1998 ◽  
Vol 274 (4) ◽  
pp. R991-R996 ◽  
Author(s):  
Elizabeth B. Klerman ◽  
David W. Rimmer ◽  
Derk-Jan Dijk ◽  
Richard E. Kronauer ◽  
Joseph F. Rizzo ◽  
...  

In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals “free run” even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.


2004 ◽  
Vol 91 (3) ◽  
Author(s):  
Mitsuyuki Nakao ◽  
Keisuke Yamamoto ◽  
Ken-ichi Honma ◽  
Satoko Hashimoto ◽  
Sato Honma ◽  
...  

1982 ◽  
Vol 233 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Stephen K. Itaya ◽  
Gary W. Van Hoesen

2000 ◽  
Vol 20 (15) ◽  
pp. 5867-5873 ◽  
Author(s):  
Kazumasa Horikawa ◽  
Shin-ichi Yokota ◽  
Kazuyuki Fuji ◽  
Masashi Akiyama ◽  
Takahiro Moriya ◽  
...  

2005 ◽  
Vol 146 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Koji Teshima ◽  
Masanori Minoguchi ◽  
Sayuri Tounai ◽  
Atsuyuki Ashimori ◽  
Junichi Eguchi ◽  
...  

2013 ◽  
Vol 305 (11) ◽  
pp. R1367-R1375 ◽  
Author(s):  
Yujiro Yamanaka ◽  
Sato Honma ◽  
Ken-ichi Honma

Entrainment of circadian behavior rhythms by daily exposure to a running wheel was examined in mice under constant darkness. Spontaneous movement was individually monitored for more than 6 mo by a thermal sensor. After establishment of steady-state free running, mice were placed in a different cage equipped with a running-wheel for 3 h once per day at 6 AM. The daily exchange was continued for 80 days. The number of wheel revolutions during exposure to the running wheel was also measured simultaneously with spontaneous movement. In 13 out of 17 mice, circadian behavior rhythm was entrained by daily wheel exposure, showing a period indistinguishable from 24 h. The entrainment occurred in parallel with an increase in spontaneous movement immediately prior to the daily wheel exposure. A similar preexposure increase was observed in only one of four nonentrained mice. The preexposure increase appeared in 19.5 days on average after the start of daily wheel exposure and persisted for 36 days on average after the termination of the exposure schedule. The preexposure increase was detected only when daily wheel exposure came into the activity phase of the circadian behavior rhythm, which was accompanied by an increase in the number of wheel revolutions. These findings indicate that a novel oscillation with a circadian period is induced in mice by daily exposure to a running wheel at a fixed time of day and suggest that the oscillation is involved in the nonphotic entrainment of circadian rhythms in spontaneous movement.


2020 ◽  
Author(s):  
Corinne Beier ◽  
Ze Zhang ◽  
Maria Yurgel ◽  
Samer Hattar

ABSTRACTRetinal ganglion cells (RGCs), the output neurons of the retina, allow us to perceive our visual environment. RGCs respond to rod/cone input through the retinal circuitry, however, a small population of RGCs are in addition intrinsically photosensitive (ipRGCs) and project to unique targets in the brain to modulate a broad range of subconscious visual behaviors such as pupil constriction and circadian photoentrainment. Despite the discovery of ipRGCs nearly two decades ago, there is still little information about how or if conventional RGCs (non-ipRGCs) target ipRGC-recipient nuclei to influence subconscious visual behavior. Using a dual recombinase color strategy, we showed that conventional RGCs innervate many subconscious ipRGC-recipient nuclei, apart from the suprachiasmatic nucleus. We revealed previously unrecognized stratification patterns of retinal innervation from ipRGCs and conventional RGCs in the ventral portion of the lateral geniculate nucleus. Further, we found that the percent innervation of ipRGCs and conventional RGCs across ipsi- and contralateral nuclei differ. Our data provide a blueprint to understand how conventional RGCs and ipRGCs innervate different brain regions to influence subconscious visual behaviors.


2020 ◽  
Author(s):  
Lori L. Scarpa ◽  
Brad Wanken ◽  
Marten Smidt ◽  
Ralph E. Mistlberger ◽  
Andrew D. Steele

SummaryPitx3ak mice lack a functioning retina and nearly all dopamine neurons of the substantia nigra (SN). del Rio-Marten et al (2019) reported that entrainment of circadian rhythms to daily light-dark and feeding schedules is absent in these mice. With food limited to 12h/day, food anticipatory circadian rhythms failed to emerge, and metabolic rhythms failed to synchronize with locomotor and feeding rhythms. The authors propose that retinal innervation of the suprachiasmatic nucleus clock is required for development of cyclic metabolic homeostasis, but methodological issues limit interpretation of the results. Using standardized feeding schedules and procedures for distinguishing free-running from entrained circadian rhythms, we confirm that behavioral and metabolic rhythms in Pitx3ak mice do not entrain to LD cycles, but we find no desynchrony between these rhythms nor a deficit in entrainment to daily feeding schedules. SN dopamine neurons surviving in Pitx3ak mice may define a mininum population sufficient for food entrainment.


Sign in / Sign up

Export Citation Format

Share Document