scholarly journals Cells of the human intestinal tract mapped across space and time

Nature ◽  
2021 ◽  
Vol 597 (7875) ◽  
pp. 250-255 ◽  
Author(s):  
Rasa Elmentaite ◽  
Natsuhiko Kumasaka ◽  
Kenny Roberts ◽  
Aaron Fleming ◽  
Emma Dann ◽  
...  

AbstractThe cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung’s disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.

2021 ◽  
Author(s):  
R Elmentaite ◽  
N Kumasaka ◽  
HW King ◽  
K Roberts ◽  
M Dabrowska ◽  
...  

AbstractThe cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. To comprehensively map cell lineages in the healthy developing, pediatric and adult human gut from ten distinct anatomical regions, as well as draining lymph nodes, we used singlecell RNA-seq and VDJ analysis of roughly one third of a million cells. This reveals the presence of BEST4+ absorptive cells throughout the human intestinal tract, demonstrating the existence of this cell type beyond the colon for the first time. Furthermore, we implicate IgG sensing as a novel function of intestinal tuft cells, and link these cells to the pathogenesis of inflammatory bowel disease. We define novel glial and neuronal cell populations in the developing enteric nervous system, and predict cell-type specific expression of Hirschsprung’s disease-associated genes. Finally, using a systems approach, we identify key cell players across multiple cell lineages driving secondary lymphoid tissue formation in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. These data provide an unprecedented catalogue of intestinal cells, and new insights into cellular programs in development, homeostasis and disease.


2020 ◽  
Vol 528 (13) ◽  
pp. 2218-2238 ◽  
Author(s):  
Attilio Iemolo ◽  
Patricia Montilla‐Perez ◽  
I‐Chi Lai ◽  
Yinuo Meng ◽  
Syreeta Nolan ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ami Shah ◽  
Madison Ratkowski ◽  
Alessandro Rosa ◽  
Paul Feinstein ◽  
Thomas Bozza

AbstractOlfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.


2021 ◽  
Vol 22 (13) ◽  
pp. 7119
Author(s):  
Golam Rbbani ◽  
Artem Nedoluzhko ◽  
Jorge Galindo-Villegas ◽  
Jorge M. O. Fernandes

Circular RNAs (circRNAs) are an emerging class of regulatory RNAs with a covalently closed-loop structure formed during pre-mRNA splicing. Recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of novel approaches to their identification and functional characterization. CircRNAs are stable, developmentally regulated, and show tissue- and cell-type-specific expression across different taxonomic groups. They play a crucial role in regulating various biological processes at post-transcriptional and translational levels. However, the involvement of circRNAs in fish immunity has only recently been recognized. There is also broad evidence in mammals that the timely expression of circRNAs in muscle plays an essential role in growth regulation but our understanding of their expression and function in teleosts is still very limited. Here, we discuss the available knowledge about circRNAs and their role in growth and immunity in vertebrates from a comparative perspective, with emphasis on cultured teleost fish. We expect that the interest in teleost circRNAs will increase substantially soon, and we propose that they may be used as biomarkers for selective breeding of farmed fish, thus contributing to the sustainability of the aquaculture sector.


2007 ◽  
Vol 353 (4) ◽  
pp. 1017-1022 ◽  
Author(s):  
Johji Nomura ◽  
Akinori Hisatsune ◽  
Takeshi Miyata ◽  
Yoichiro Isohama

1992 ◽  
Vol 12 (2) ◽  
pp. 552-562
Author(s):  
L Pani ◽  
X B Quian ◽  
D Clevidence ◽  
R H Costa

The transcription factor hepatocyte nuclear factor 3 (HNF-3) is involved in the coordinate expression of several liver genes. HNF-3 DNA binding activity is composed of three different liver proteins which recognize the same DNA site. The HNF-3 proteins (designated alpha, beta, and gamma) possess homology in the DNA binding domain and in several additional regions. To understand the cell-type-specific expression of HNF-3 beta, we have defined the regulatory sequences that elicit hepatoma-specific expression. Promoter activity requires -134 bp of HNF-3 beta proximal sequences and binds four nuclear proteins, including two ubiquitous factors. One of these promoter sites interacts with a novel cell-specific factor, LF-H3 beta, whose binding activity correlates with the HNF-3 beta tissue expression pattern. Furthermore, there is a binding site for the HNF-3 protein within its own promoter, suggesting that an autoactivation mechanism is involved in the establishment of HNF-3 beta expression. We propose that both the LF-H3 beta and HNF-3 sites play an important role in the cell-type-specific expression of the HNF-3 beta transcription factor.


Sign in / Sign up

Export Citation Format

Share Document