scholarly journals Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking

2020 ◽  
Vol 38 (11) ◽  
pp. 1298-1308 ◽  
Author(s):  
Samuele Ferrari ◽  
Aurelien Jacob ◽  
Stefano Beretta ◽  
Giulia Unali ◽  
Luisa Albano ◽  
...  
Blood ◽  
2005 ◽  
Vol 106 (10) ◽  
pp. 3386-3395 ◽  
Author(s):  
Els Verhoeyen ◽  
Maciej Wiznerowicz ◽  
Delphine Olivier ◽  
Brigitte Izac ◽  
Didier Trono ◽  
...  

AbstractA major limitation of current lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent cells, such as human CD34+ cells, that reside in the G0 phase of the cell cycle and that are highly enriched in hematopoietic stem cells. This hampers their application for gene therapy of hematopoietic cells. Here, we designed novel LVs that overcome this restriction by displaying “early-acting cytokines” on their surface. Display of thrombopoietin, stem cell factor, or both cytokines on the LV surface allowed efficient gene delivery into quiescent cord blood CD34+ cells. Moreover, these surface-engineered LVs preferentially transduced and promoted survival of resting CD34+ cells rather than cycling cells. Finally, and most importantly, these novel LVs allowed superior gene transfer in the most immature CD34+ cells as compared to conventional LVs, even when the latter vectors were used to transduce cells in the presence of recombinant cytokines. This was demonstrated by their capacity to promote selective transduction of CD34+ cell in in vitro derived long-term culture-initiating cell (LTC-IC) colonies and of long-term NOD/SCID repopulating cells (SRCs) in vivo.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Author(s):  
Sara Fañanas-Baquero ◽  
Oscar Quintana-Bustamante ◽  
Daniel P. Dever ◽  
Omaira Alberquilla ◽  
Rebeca Sanchez ◽  
...  

Author(s):  
Thao Trinh ◽  
James Ropa ◽  
Arafat Aljoufi ◽  
Scott Cooper ◽  
Anthony Sinn ◽  
...  

2013 ◽  
Vol 11 (1) ◽  
pp. 625-633 ◽  
Author(s):  
Philippe Brunet de la Grange ◽  
Marija Vlaski ◽  
Pascale Duchez ◽  
Jean Chevaleyre ◽  
Veronique Lapostolle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document