scholarly journals Thermodynamic and Kinetic Analyses of Iron Response Element (IRE)-mRNA Binding to Iron Regulatory Protein, IRP1

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Mateen A. Khan ◽  
William E. Walden ◽  
Elizabeth C. Theil ◽  
Dixie J. Goss
Blood ◽  
2009 ◽  
Vol 113 (3) ◽  
pp. 679-687 ◽  
Author(s):  
Dunja Ferring-Appel ◽  
Matthias W. Hentze ◽  
Bruno Galy

Abstract Mice with total and constitutive iron regulatory protein 2 (IRP2) deficiency exhibit microcytosis and altered body iron distribution with duodenal and hepatic iron loading and decreased iron levels in splenic macrophages. To explore cell-autonomous and systemic context-dependent functions of IRP2 and to assess the systemic consequences of local IRP2 deficiency, we applied Cre/Lox technology to specifically ablate IRP2 in enterocytes, hepatocytes, or macrophages, respectively. This study reveals that the hepatic and duodenal manifestations of systemic IRP2 deficiency are largely explained by cell-autonomous functions of IRP2. By contrast, IRP2-deficient macrophages from otherwise IRP2-sufficient mice do not display the abnormalities of macrophages from systemically IRP2-deficient animals, suggesting that these result from IRP2 disruption in other cell type(s). Mice with enterocyte-, hepatocyte-, or macrophage-specific IRP2 deficiency display normal red blood cell and plasma iron parameters, supporting the notion that the microcytosis in IRP2-deficient mice likely reflects an intrinsic defect in hematopoiesis. This work defines the respective roles of IRP2 in the determination of critical body iron parameters such as organ iron loading and erythropoiesis.


2020 ◽  
Vol 21 (18) ◽  
pp. 6751
Author(s):  
Laurie R. Thompson ◽  
Thais G. Oliveira ◽  
Evan R. Hermann ◽  
Winyoo Chowanadisai ◽  
Stephen L. Clarke ◽  
...  

The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer. In addition to loss of tumor suppressor functions, mutations in TP53 promote cancer progression by altering cellular iron acquisition and metabolism. A newly identified role for TP53 in the coordination of iron homeostasis and cancer cell survival lies in the ability for TP53 to protect against ferroptosis, a form of iron-mediated cell death. The purpose of this study was to determine the extent to which TP53 mutation status affects the cellular response to ferroptosis induction. Using H1299 cells, which are null for TP53, we generated cell lines expressing either a tetracycline inducible wild-type (WT) TP53 gene, or a representative mutated TP53 gene from six exemplary “hotspot” mutations in the DNA binding domain (R273H, R248Q, R282W, R175H, G245S, and R249S). TP53 mutants (R273H, R248Q, R175H, G245S, and R249S) exhibited increased sensitivity ferroptosis compared to cells expressing WT TP53. As iron-mediated lipid peroxidation is critical for ferroptosis induction, we hypothesized that iron acquisition pathways would be upregulated in mutant TP53-expressing cells. However, only cells expressing the R248Q, R175H, and G245S TP53 mutation types exhibited statistically significant increases in spontaneous iron regulatory protein (IRP) RNA binding activity following ferroptosis activation. Moreover, changes in the expression of downstream IRP targets were inconsistent with the observed differences in sensitivity to ferroptosis. These findings reveal that canonical iron regulatory pathways are bypassed during ferroptotic cell death. These results also indicate that induction of ferroptosis may be an effective therapeutic approach for tumor cells expressing distinct TP53 mutation types.


Sign in / Sign up

Export Citation Format

Share Document