iron response element
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2109
Author(s):  
Xu-Qiao Chen ◽  
Carlos A. Barrero ◽  
Rodrigo Vasquez-Del Carpio ◽  
E. Premkumar Reddy ◽  
Chiara Fecchio ◽  
...  

Posiphen tartrate (Posiphen) is an orally available small molecule that targets a conserved regulatory element in the mRNAs of amyloid precursor protein (APP) and α-synuclein (αSYN) and inhibits their translation. APP and αSYN can cause neurodegeneration when their aggregates induce neurotoxicity. Therefore, Posiphen is a promising drug candidate for neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Posiphen’s safety has been demonstrated in three independent phase I clinical trials. Moreover, in a proof of concept study, Posiphen lowered neurotoxic proteins and inflammatory markers in cerebrospinal fluid of mild cognitive impaired patients. Herein we investigated whether Posiphen reduced the expression of other proteins, as assessed by stable isotope labeling with amino acids in cell culture (SILAC) followed by mass spectrometry (MS)-based proteomics. Neuroblastoma SH-SY5Y cells, an in vitro model of neuronal function, were used for the SILAC protein profiling response. Proteins whose expression was altered by Posiphen treatment were characterized for biological functions, pathways and networks analysis. The most significantly affected pathway was the Huntington’s disease signaling pathway, which, along with huntingtin (HTT) protein, was down-regulated by Posiphen in the SH-SY5Y cells. The downregulation of HTT protein by Posiphen was confirmed by quantitative Western blotting and immunofluorescence. Unchanged mRNA levels of HTT and a comparable decay rate of HTT proteins after Posiphen treatment supported the coclusion that Posiphen reduced HTT via downregulation of the translation of HTT mRNA. Meanwhile, the downregulation of APP and αSYN proteins by Posiphen was also confirmed. The mRNAs encoding HTT, APP and αSYN contain an atypical iron response element (IRE) in their 5′-untranslated regions (5′-UTRs) that bind iron regulatory protein 1 (IRP1), and Posiphen specifically bound this complex. Conversely, Posiphen did not bind the IRP1/IRE complex of mRNAs with canonical IREs, and the translation of these mRNAs was not affected by Posiphen. Taken together, Posiphen shows high affinity binding to the IRE/IRP1 complex of mRNAs with an atypical IRE stem loop, inducing their translation suppression, including the mRNAs of neurotoxic proteins APP, αSYN and HTT.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1257
Author(s):  
Marta Seco-Cervera ◽  
Pilar González-Cabo ◽  
Federico Pallardó ◽  
Carlos Romá-Mateo ◽  
José García-Giménez

The thioredoxin family consists of a small group of redox proteins present in all organisms and composed of thioredoxins (TRXs), glutaredoxins (GLRXs) and peroxiredoxins (PRDXs) which are found in the extracellular fluid, the cytoplasm, the mitochondria and in the nucleus with functions that include antioxidation, signaling and transcriptional control, among others. The importance of thioredoxin family proteins in neurodegenerative diseases is gaining relevance because some of these proteins have demonstrated an important role in the central nervous system by mediating neuroprotection against oxidative stress, contributing to mitochondrial function and regulating gene expression. Specifically, in the context of Friedreich’s ataxia (FRDA), thioredoxin family proteins may have a special role in the regulation of Nrf2 expression and function, in Fe-S cluster metabolism, controlling the expression of genes located at the iron-response element (IRE) and probably regulating ferroptosis. Therefore, comprehension of the mechanisms that closely link thioredoxin family proteins with cellular processes affected in FRDA will serve as a cornerstone to design improved therapeutic strategies.


2019 ◽  
Vol 57 (12) ◽  
pp. 1837-1845 ◽  
Author(s):  
Martin Volkmann ◽  
Rudolf Richter ◽  
Thomas Herrmann ◽  
Sabine Hentze ◽  
Michaela Hör ◽  
...  

Abstract Background In hereditary hyperferritinaemia-cataract syndrome (HHCS), single nucleic acid alterations in the ferritin light chain (L-ferritin) iron response element (IRE) constitutively derepress ferritin synthesis, resulting in hyperferritinaemia, L-ferritin deposits in the lens of the eye and early bilateral cataract onset. Methods In this study, six German families with putative HHCS were analysed. Clinical diagnosis of HHCS was based on medical history, evaluation of ferritin serum levels, transferrin saturation and clinical ophthalmological examination. Diagnosis was confirmed by polymerase chain reaction (PCR)-based DNA sequencing of the L-ferritin IRE. Results Genetic analysis of the L-ferritin IRE revealed relevant single nucleic acid alterations in each of the affected families. Variants c.-168G > A, c.-168G > U and c.-167C > U were located in the C-bulge region; and variants c.-161C > U and c.-157G > A were located in the hexanucleotide loop of the L-ferritin IRE. Conclusions Family history of hyperferritinaemia and juvenile cataracts are strong indicators of HHCS. Genetic analysis of the L-ferritin IRE is a straightforward procedure to confirm the diagnosis. Accurate diagnosis of hyperferritinaemia can avoid unnecessary treatment by venesection, and focus attention on early cataract detection in offspring at risk.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Katia Perruccio ◽  
Francesco Arcioni ◽  
Carla Cerri ◽  
Roberta La Starza ◽  
Donatella Romanelli ◽  
...  

Two 8- and 9-year-old brothers were referred to the Pediatric Oncology Unit, Perugia General Hospital, because of hyperferritinemia. Both had a history of bilateral cataract and epilepsy. Genetic investigation revealed two distinct mutations in iron haemostasis genes; homozygosity for the HFE gene H63D mutation in the younger and heterozygosity in the elder. Both displayed heterozygosity for C33T mutation in the ferritin light chain iron response element. A 7-year-old boy from another family was referred to our unit because of hyperferritinemia. Genetic analyses did not reveal HFE gene mutations. Family history showed that his mother was also affected by hyperferritinemia without HFE gene mutations. Magnetic resonance imaging in the mother was positive for iron overload in the spleen. Cataract was diagnosed in mother and child. Further genetic investigation revealed the C29G mutation of the ferritin light chain iron response element. C33T and C29G mutations in the ferritin light chain iron response element underlie the Hereditary Hyperferritinemia-Cataract Syndrome (HHCS). The HFE gene H63D mutation underlies Hereditary Haemochromatosis (HH), which needs treatment to prevent organ damages by iron overload. HHCS was definitively diagnosed in all three children. HHCS is an autosomal dominant disease characterized by increased L-ferritin production. L-Ferritin aggregates accumulate preferentially in the lens, provoking bilateral cataract since childhood, as unique known organ damage. Epilepsy in one case and the spleen iron overload in another could suggest the misleading diagnosis of HH. Consequently, the differential diagnosis between alterations of iron storage system was essential, particularly in children, and required further genetic investigation.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
MATEEN AHMAD KHAN ◽  
WILLIAM E WALDEN ◽  
ELIZABETH C THEIL ◽  
DIXIE J GOSS

2005 ◽  
Vol 25 (16) ◽  
pp. 6879-6888 ◽  
Author(s):  
Handan Kaygun ◽  
William F. Marzluff

ABSTRACT The levels of replication-dependent histone mRNAs are coordinately regulated with DNA synthesis. A major regulatory step in histone mRNA metabolism is regulation of the half-life of histone mRNAs. Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated. Instead, they end with a conserved stem-loop structure, which is recognized by the stem-loop binding protein (SLBP). SLBP is required for histone mRNA processing, as well as translation. We show here, using histone mRNAs whose translation can be regulated by the iron response element, that histone mRNAs need to be actively translated for their rapid degradation following the inhibition of DNA synthesis. We also demonstrate the requirement for translation using a mutant SLBP which is inactive in translation. Histone mRNAs are not rapidly degraded when DNA synthesis is inhibited or at the end of S phase in cells expressing this mutant SLBP. Replication-dependent histone mRNAs have very short 3′ untranslated regions, with the stem-loop located 30 to 70 nucleotides downstream of the translation termination codon. We show here that the stability of histone mRNAs can be modified by altering the position of the stem-loop, thereby changing the distance from the translation termination codon.


Blood ◽  
2004 ◽  
Vol 104 (7) ◽  
pp. 2178-2180 ◽  
Author(s):  
Sachie Yamaji ◽  
Paul Sharp ◽  
Bala Ramesh ◽  
Surjit Kaila Srai

Abstract We investigated the effects of the iron regulatory peptide hepcidin on iron transport by the human intestinal epithelial Caco-2 cell line. Caco-2 cells were exposed to hepcidin for 24 hours prior to the measurement of both iron transport and transporter protein and mRNA expression. Incubation with hepcidin significantly decreased apical iron uptake by Caco-2 cells. This was accompanied by a decrease in both the protein and the mRNA expression of the iron-response element containing variant of the divalent metal transporter (DMT1[+IRE]). In contrast, iron efflux and iron-regulated gene1 (IREG1) expression were unaffected by hepcidin. Hepcidin interacts directly with a model intestinal epithelium. The primary effect of this regulatory peptide is to modulate the apical membrane uptake machinery, thereby controlling the amount of iron absorbed from the diet. (Blood. 2004;104:2178-2180)


Sign in / Sign up

Export Citation Format

Share Document