scholarly journals Laminar flow drag reduction on soft porous media

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Parisa Mirbod ◽  
Zhenxing Wu ◽  
Goodarz Ahmadi
2009 ◽  
Vol 4 (2) ◽  
pp. 468-478 ◽  
Author(s):  
Toshitake ANDO ◽  
Toshihiko SHAKOUCHI ◽  
Hiroyuki YAMAMOTO ◽  
Koichi TSUJIMOTO

1999 ◽  
Author(s):  
Keizo Watanabe ◽  
Hiroshi Udagawa

Abstract By applying a highly water-repellent wall pipe in the drag reduction of polymer solutions, a flow system in which drag reduction is obtained in both laminar and turbulent flow ranges has been realized. Experiments were carried out to measure the pressure drop in pipes with a highly water-repellent wall and an acrylic resin wall by means of a pressure transducer. The diameter of the pipe was 6mm. The polymer solutions tested were PE015 aqueous solutions in the concentration range of 30ppm∼1000ppm. The drag reduction ratio for laminar flow was about 11∼15%. To understand this effect, the pressure drop was measured by using surfactant solutions and degassed water, and by pressurizing tap water in the pipeline. It was shown that the laminar drag reduction does not occur in the case of surfactant solutions although degassed water and pressurizing tap water in the pipeline have no effect on the reduction. In the laminar flow range, the friction factor of a power-law fluid with fluid slip was analyzed by applying the modified boundary condition on fluid slip at the pipe wall, and the analytical results agree with the experimental results in the low Reynolds number range.


2020 ◽  
Vol 52 (1) ◽  
pp. 263-284 ◽  
Author(s):  
Jonghyun Ha ◽  
Ho-Young Kim

Soft porous solids can change their shapes by absorbing liquids via capillarity. Such poro-elasto-capillary interactions can be seen in the wrinkling of paper, swelling of cellulose sponges, and morphing of resurrection plants. Here, we introduce physical principles relevant to the phenomena and survey recent advances in the understanding of swelling and shrinkage of bulk soft porous media due to wetting and drying. We then consider various morphing modes of porous sheets, which are induced by localized wetting and swelling of soft porous materials. We focus on physical insights with the aim of triggering novel experimental findings and promoting practical applications.


2020 ◽  
Vol 2 (4) ◽  
pp. 1614-1622 ◽  
Author(s):  
Keqin Zheng ◽  
Jinde Zhang ◽  
Hanna Dodiuk ◽  
Samuel Kenig ◽  
Carol Barry ◽  
...  

Author(s):  
Phillip Johnson ◽  
Mauro Vaccaro ◽  
Connor O’Donnell ◽  
Anna Trybala ◽  
Victor Starov

2020 ◽  
Vol 4 (3) ◽  
pp. 31
Author(s):  
Phillip Johnson ◽  
Mauro Vaccaro ◽  
Victor Starov ◽  
Anna Trybala

A theory of the amount of foam produced by compression/decompression cycles of a soft porous media is developed. The amount of foam produced was found to be dependent on both the amount of surfactant within the media and the minimum separation between the plates of the compression device. The latter is determined by the mechanical properties of the soft media. The theory also shows the importance of the decompression of the media as this is the mechanism of where the air penetrates into the soft porous material. The accumulated air is used during the compression stage for foam formation. The theoretically predicted values of foam mass are found to have good agreement with experimental observations, which validates the theory predictions. The theory also predicts independence of the foam produced in terms of the frequency of compression/decompression cycles, which agrees with our experimental observations.


Sign in / Sign up

Export Citation Format

Share Document