scholarly journals A proteomic time course through the differentiation of human induced pluripotent stem cells into hepatocyte-like cells

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tracey Hurrell ◽  
Charis-Patricia Segeritz ◽  
Ludovic Vallier ◽  
Kathryn S. Lilley ◽  
Allan D. Cromarty
PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e103418 ◽  
Author(s):  
Deborah Prè ◽  
Michael W. Nestor ◽  
Andrew A. Sproul ◽  
Samson Jacob ◽  
Peter Koppensteiner ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4187 ◽  
Author(s):  
Hayato Fukusumi ◽  
Yukako Handa ◽  
Tomoko Shofuda ◽  
Yonehiro Kanemura

Since the development of human-induced pluripotent stem cells (hiPSCs), various types of hiPSC-derived cells have been established for regenerative medicine and drug development. Neural stem/progenitor cells (NSPCs) derived from hiPSCs (hiPSC-NSPCs) have shown benefits for regenerative therapy of the central nervous system. However, owing to their intrinsic proliferative potential, therapies using transplanted hiPSC-NSPCs carry an inherent risk of undesired growth in vivo. Therefore, it is important to find cytotoxic drugs that can specifically target overproliferative transplanted hiPSC-NSPCs without damaging the intrinsic in vivo stem-cell system. Here, we examined the chemosensitivity of hiPSC-NSPCs and human neural tissue—derived NSPCs (hN-NSPCs) to the general anticancer drugs cisplatin, etoposide, mercaptopurine, and methotrexate. A time-course analysis of neurospheres in a microsphere array identified cisplatin and etoposide as fast-acting drugs, and mercaptopurine and methotrexate as slow-acting drugs. Notably, the slow-acting drugs were eventually cytotoxic to hiPSC-NSPCs but not to hN-NSPCs, a phenomenon not evident in the conventional endpoint assay on day 2 of treatment. Our results indicate that slow-acting drugs can distinguish hiPSC-NSPCs from hN-NSPCs and may provide an effective backup safety measure in stem-cell transplant therapies.


2019 ◽  
Author(s):  
Pablo Trindade ◽  
Erick Correia Loiola ◽  
Juciano Gasparotto ◽  
Camila Tiefensee Ribeiro ◽  
Pablo Leal Cardozo ◽  
...  

AbstractAstrogliosis comprises a variety of changes in astrocytes that occur in a context-specific manner, triggered by temporally diverse signaling events that vary with the nature and severity of brain insults. However, most mechanisms underlying astrogliosis were described using animal models, which fail to reproduce some aspects of human astroglial signaling. Here, we report an in vitro model to study astrogliosis using human induced pluripotent stem cells (iPSC)-derived astrocytes which replicates aspects temporally intertwined of reactive astrocytes in vivo. We analyzed the time course of astrogliosis by measuring nuclear translocation of NF-kB, secretion of cytokines and changes in morphological phenotypes of human iPSC-derived astrocytes exposed to TNF-α. It was observed the NF-kB nuclear translocation, increases either in the inflammation-related cytokines secretion and gene expression for IL-1β, IL-6 and TNF-α following 24 h TNF-α stimulation. After 5 days, human iPSC-derived astrocytes exposed to TNF-α exhibited increases in vimentin and GFAP immunolabeling, elongated shape and shrinkage of nuclei, which is typical phenotypes of astrogliosis. Moreover, about a 50% decrease in D-[3H] aspartate uptake was observed over the astrogliosis course with no evident cell damage, which suggests astrocytic dysfunction. Taken together, our results indicate that cultured human iPSC-derived astrocytes reproduce canonical events associated to astrogliosis in a time dependent fashion. Our findings may contribute to a better understanding of mechanisms governing human astrogliosis. Furthermore, the approach described here presents a potential applicability as a platform to uncover novel biomarkers and new drug targets to refrain astrogliosis associated to human brain disorders.


2010 ◽  
Vol 34 (8) ◽  
pp. S36-S36
Author(s):  
Ping Duan ◽  
Xuelin Ren ◽  
Wenhai Yan ◽  
Xuefei Han ◽  
Xu Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document