scholarly journals Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zehra Irshad ◽  
Mingzhan Xue ◽  
Amal Ashour ◽  
James R. Larkin ◽  
Paul J. Thornalley ◽  
...  
2006 ◽  
Vol 26 (11) ◽  
pp. 2490-2496 ◽  
Author(s):  
Peter S. Gargalovic ◽  
Nima M. Gharavi ◽  
Michael J. Clark ◽  
Joanne Pagnon ◽  
Wen-Pin Yang ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Elena Vladykoskaya ◽  
Petra Haberzettl ◽  
Yonis Ahmed ◽  
Bradford G Hill ◽  
Srinivas D Sithu ◽  
...  

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are associated with atherosclerosis. Expression of UPR target genes such as activating transcription factor 3 (ATF3) and ATF4 is markedly increased in human atherosclerotic lesions. Staining for these proteins co-localizes with the staining with antibodies that recognize the aldehydic epitopes of oxidized LDL, suggesting that lipid-derived aldehydes could be involved in mediating ER stress and UPR. We examined the role of phospholipid aldehyde, 1-palmitoyl-2-(5-oxovaleroyl)- sn -glycero-3-phosphocholine (POVPC), unsaturated lipid-derived aldehydes- 4-hydroxy, trans -2-nonenal (HNE) and acrolein in the induction of ER-stress and UPR in human aortic endothelial cells (HAEC) and human umbical vein endothelial cells (HUVEC). POVPC, HNE and acrolein (10 –25 μM) increased the phosphorylation of eIF2α (eukaryotic initiation factor-2α) by 1.5–5 fold (P<0.001) and induced its downstream effector proteins - ATF4 (1.5–3.5 fold; P<0.001) and ATF3 (4–10 fold; P<0.0001). Incubation of HAEC with these aldehydes also increased the adhesion of THP-1 cells (monocyte) to HAEC by 1.4–1.6 fold (P<0.01). Moreover, incubation of endothelial cells with POVPC increased the mRNA level of the pro-inflammatory cytokine IL-8 by >25 fold (P<0.0001). Chemical chaperone, phenyl butyric acid (PBA), diminished aldehydes-induced expression of ATF3 and ATF4 proteins, endothelial cell-monocyte adhesion and IL-8 formation by 80–95% (P<0.001). POVPC (10–25 μM) also activated JNK by (3–6 fold) in HAEC. Reduction of POVPC to its corresponding alcohol, 1-palmitoyl-2-(5-hydroxyvaleroyl)- sn -glycero-3-phosphocholine (PHVPC) inhibited JNK activation by 74 ± 14 % (P<0.001). Pharmacological inhibition of JNK, inhibited the aldehyde-induced induction of ATF3 and ATF4 proteins by 70–90 % (P<0.001) but not the phosphorylation of eIF2α, and PBA inhibited the POVPC-induced JNK activation by 85 ± 11 % (P<0.001). These data suggest that lipoprotein oxidation products activate endothelial cells in part by inducing ER-stress and their inflammatory signaling could be attenuated by chemical chaperones of protein folding.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 194
Author(s):  
Adriana Cortés ◽  
Álvaro Pejenaute ◽  
Javier Marqués ◽  
Íñigo Izal ◽  
Silvia Cenoz ◽  
...  

Oxidative stress constitutes a key molecular mechanism in the development of cardiovascular diseases. A potential relationship between reactive oxygen species (ROS) driven by the NADPH oxidase family (NOX) and the unfolded protein response (UPR) has been postulated. Nevertheless, there is a lack of information about the crosstalk between NOX5 homologue and the UPR in a cardiovascular context. The main aim was to analyze NOX5-mediated ROS effects in the UPR and its importance in cardiovascular diseases. To this effect, we used an adenoviral NOX5-β overexpression model in human aortic endothelial cells (HAEC) and a conditional endothelial NOX5 knock-in mouse. Using expression arrays, we investigated NOX5-induced genomic changes in HAEC. Compared with the control HAEC, 298 genes were differentially expressed. Gene ontology analysis revealed the activation of numerous cellular routes, the most relevant being the UPR pathway. Using real-time PCR and Western Blot experiments, we confirmed that NOX5 overexpression induced changes in the expression of the UPR components, which were associated with increased apoptosis. Moreover, in endothelial-specific NOX5 knock-in mice, we found changes in the expression of the UPR components genes. In these mice, myocardial infarction was performed by permanent coronary artery ligation; however, NOX5 expression was not associated with differences in the UPR components mRNA levels. In these animals, we found significant associations between the UPR components gene expression and echocardiographic parameters. Our data support the idea that NOX5-derived ROS may modulate the UPR pathway in endothelial cells, which might play a relevant role in cardiac physiology.


2006 ◽  
Vol 291 (6) ◽  
pp. E1274-E1280 ◽  
Author(s):  
Sherif Z. Yacoub Wasef ◽  
Katherine A. Robinson ◽  
Mary N. Berkaw ◽  
Maria G. Buse

Tribbles 3 (TRB3) is a recently recognized atypical inactive kinase that negatively regulates Akt activity in hepatocytes, resulting in insulin resistance. Recent reports link TRB3 to nutrient sensing and regulation of cell survival under stressful conditions. We studied the regulation of TRB3 by glucose, insulin, dexamethasone (Dex), and the unfolded protein response (UPR) in 3T3-L1 adipocytes and in L6 myotubes. In 3T3-L1 adipocytes, incubation in high glucose with insulin did not increase TRB3 mRNA expression. Rather, TRB3 mRNA increased fourfold with glucose deprivation and two- to threefold after incubation with tunicamcyin (an inducer of the UPR). Incubation of cells in no glucose or in tunicamcyin stimulated the expression of CCAAT/enhancer-binding protein homologous protein. In L6 myotubes, absent or low glucose induced TRB3 mRNA expression by six- and twofold, respectively. The addition of Dex to 5 mM glucose increased TRB3 mRNA expression twofold in 3T3-L1 adipocytes but decreased it 16% in L6 cells. In conclusion, TRB3 is not the mediator of high glucose or glucocorticoid-induced insulin resistance in 3T3-L1 adipocytes or L6 myotubes. TRB3 is induced by glucose deprivation in both cell types as a part of the UPR, where it may be involved in regulation of cell survival in response to glucose depletion.


2018 ◽  
Vol 120 ◽  
pp. S101
Author(s):  
Álvaro Pejenaute Martinez de Lizarrondo ◽  
Adriana Cortés Jiménez ◽  
Eduardo Ansorena Artieda ◽  
Silvia Cenoz Zubillaga ◽  
Carlos de Miguel Vázquez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document