scholarly journals Reduction of bias in the evaluation of fractional anisotropy and mean diffusivity in magnetic resonance diffusion tensor imaging using region-of-interest methodology

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Youngseob Seo ◽  
Nancy K. Rollins ◽  
Zhiyue J. Wang

Abstract Accurate quantification of fractional anisotropy (FA) and mean diffusivity (MD) in MR diffusion tensor imaging (DTI) requires adequate signal-to-noise ratio (SNR) especially in low FA areas of the brain, which necessitates clinically impractical long image acquisition times. We explored a SNR enhancement strategy using region-of-interest (ROI)-based diffusion tensor for quantification. DTI scans from a healthy male were acquired 15 times and combined into sets with different number of signal averages (NSA = 1–4, 15) at one 1.5-T Philips and three 3-T (Philips, Siemens and GE) scanners. Equivalence test was performed to determine NSA thresholds for bias-free FA and MD quantifications by comparison with reference values derived from images with NSA = 15. We examined brain areas with low FA values including caudate nucleus, globus pallidus, putamen, superior temporal gyrus, and substructures within thalamus (lateral dorsal, ventral anterior and posterior nuclei), where bias-free FA is difficult to obtain using a conventional approach. Our results showed that bias-free FA can be obtained with NSA = 2 or 3 in some cases using ROI-based analysis. ROI-based analysis allows reliable FA and MD quantifications in various brain structures previously difficult to study with clinically feasible data acquisition schemes.

2013 ◽  
Vol 3 ◽  
pp. 53 ◽  
Author(s):  
Natalie C. Chuck ◽  
Günther Steidle ◽  
Iris Blume ◽  
Michael A. Fischer ◽  
Daniel Nanz ◽  
...  

Objectives: The purpose of this study was to evaluate to which degree investment of acquisition time in more encoding directions leads to better image quality (IQ) and what influence the number of encoding directions and the choice of b-values have on renal diffusion tensor imaging (DTI) parameters. Material and Methods: Eight healthy volunteers (32.3 y ± 5.1 y) consented to an examination in a 1.5T whole-body MR scanner. Coronal DTI data sets of the kidneys were acquired with systematic variation of b-values (50, 150, 300, 500, and 700 s/mm2) and number of diffusion-encoding directions (6, 15, and 32) using a respiratory-triggered echo-planar sequence (TR/TE 1500 ms/67 ms, matrix size 128 × 128). Additionally, two data sets with more than two b-values were acquired (0, 150, and 300 s/mm2 and all six b-values). Parametrical maps were calculated on a pixel-by-pixel basis. Image quality was determined with a reader score. Results: Best IQ was visually assessed for images acquired with 15 and 32 encoding directions, whereas images acquired with six directions had significantly lower IQ ratings. Image quality, fractional anisotropy, and mean diffusivity only varied insignificantly for b-values between 300 and 500 s/mm2. In the renal medulla fractional anisotropy (FA) values between 0.43 and 0.46 and mean diffusivity (MD) values between 1.8-2.1 × 10-3 mm2/s were observed. In the renal cortex, the corresponding ranges were 0.24-0.25 (FA) and 2.2-2.8 × 10-3 mm2/s (MD). Including b-values below 300 s/mm2, notably higher MD values were observed, while FA remained constant. Susceptibility artifacts were more prominent in FA maps than in MD maps. Conclusion: In DTI of the kidneys at 1.5T, the best compromise between acquisition time and resulting image quality seems the application of 15 encoding directions with b-values between 300 and 500 s/mm2. Including lower b-values allows for assessment of fast diffusing spin components.


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0132360 ◽  
Author(s):  
Laura-Ann McGill ◽  
Andrew D. Scott ◽  
Pedro F. Ferreira ◽  
Sonia Nielles-Vallespin ◽  
Tevfik Ismail ◽  
...  

2018 ◽  
Author(s):  
Farshid Sepehrband ◽  
Ryan P Cabeen ◽  
Jeiran Choupan ◽  
Giuseppe Barisano ◽  
Meng Law ◽  
...  

AbstractDiffusion tensor imaging (DTI) has been extensively used to map changes in brain tissue related to neurological disorders. Among the most widespread DTI findings are increased mean diffusivity and decreased fractional anisotropy of white matter tissue in neurodegenerative diseases. Here we utilize multi-shell diffusion imaging to separate diffusion signal of the brain parenchyma from fluid within the white matter. We show that unincorporated anisotropic water in perivascular space (PVS) significantly, and systematically, biases DTI measures, casting new light on the biological validity of many previously reported findings. Despite the challenge this poses for interpreting these past findings, our results suggest that multi-shell diffusion MRI provides a new opportunity for incorporating the PVS contribution, ultimately strengthening the clinical and scientific value of diffusion MRI.HighlightsPerivascular space (PVS) fluid significantly contributes to diffusion tensor imaging metricsIncreased PVS fluid results in increased mean diffusivity and decreased fractional anisotropyPVS contribution to diffusion signal is overlooked and demands further investigation


2017 ◽  
Vol 32 (6) ◽  
pp. 550-559 ◽  
Author(s):  
Jacquie Hodge ◽  
Bradley Goodyear ◽  
Helen Carlson ◽  
Xing-Chang Wei ◽  
Adam Kirton

Perinatal stroke injures developing motor systems, resulting in hemiparetic cerebral palsy. Diffusion tensor imaging can explore structural connectivity. We used diffusion tensor imaging to assess corticospinal tract diffusion in hemiparetic children with perinatal stroke. Twenty-eight children (6-18 years) with unilateral stroke underwent diffusion tensor imaging. Four corticospinal tract assessments included full tract, partial tract, minitract and region of interest. Diffusion characteristics (fractional anisotropy, mean, axial, and radial diffusivity) were calculated. Ratios (lesioned/nonlesioned) were compared across segments and to validated long-term motor outcomes (Pediatric Stroke Outcome Measure, Assisting Hand Assessment, Melbourne Assessment). Fractional anisotropy and radial diffusivity ratios decreased as tract size decreased, while mean diffusivity showed consistent symmetry. Poor motor outcomes were associated with lower fractional anisotropy in all segments and radial diffusivity correlated with both Assisting Hand Assessment and Melbourne Assessment. Diffusion imaging of segmented corticospinal tracts is feasible in hemiparetic children with perinatal stroke. Correlations with disability support clinical relevance and utility in model development for personalized rehabilitation.


2020 ◽  
Vol 133 (3) ◽  
pp. 839-847 ◽  
Author(s):  
John W. Rutland ◽  
Kuang-Han Huang ◽  
Corey M. Gill ◽  
Dillan F. Villavisanis ◽  
Judy Alper ◽  
...  

OBJECTIVETrigeminal neuralgia (TN) is a debilitating neurological disease that commonly results from neurovascular compression of the trigeminal nerve (CN V). Although the CN V has been extensively studied at the site of neurovascular compression, many pathophysiological factors remain obscure. For example, thalamic-somatosensory function is thought to be altered in TN, but the abnormalities are inadequately characterized. Furthermore, there are few studies using 7-T MRI to examine patients with TN. The purpose of the present study was to use 7-T MRI to assess microstructural alteration in the thalamic-somatosensory tracts of patients with TN by using ultra–high field MRI.METHODSTen patients with TN and 10 age- and sex-matched healthy controls underwent scanning using 7-T MRI with diffusion tensor imaging. Structural images were segmented with an automated algorithm to obtain thalamus and primary somatosensory cortex (S1). Probabilistic tractography was performed between the thalamus and S1, and the microstructure of the thalamic-somatosensory tracts was compared between patients with TN and controls.RESULTSFractional anisotropy of the thalamic-somatosensory tract ipsilateral to the site of neurovascular compression was reduced in patients (mean 0.43) compared with side-matched controls (mean 0.47, p = 0.01). The mean diffusivity was increased ipsilaterally in patients (mean 6.58 × 10−4 mm2/second) compared with controls (mean 6.15 × 10−4 mm2/second, p = 0.02). Radial diffusivity was increased ipsilaterally in patients (mean 4.91 × 10−4 mm2/second) compared with controls (mean 4.44 × 10−4 mm2/second, p = 0.01). Topographical analysis revealed fractional anisotropy reduction and diffusivity elevation along the entire anatomical S1 arc in patients with TN.CONCLUSIONSThe present study is the first to examine microstructural properties of the thalamic-somatosensory anatomy in patients with TN and to evaluate quantitative differences compared with healthy controls. The finding of reduced integrity of these white matter fibers provides evidence of microstructural alteration at the level of the thalamus and S1, and furthers the understanding of TN neurobiology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
B. Tornifoglio ◽  
A. J. Stone ◽  
R. D. Johnston ◽  
S. S. Shahid ◽  
C. Kerskens ◽  
...  

AbstractThis study investigates diffusion tensor imaging (DTI) for providing microstructural insight into changes in arterial tissue by exploring how cell, collagen and elastin content effect fractional anisotropy (FA), mean diffusivity (MD) and tractography. Five ex vivo porcine carotid artery models (n = 6 each) were compared—native, fixed native, collagen degraded, elastin degraded and decellularised. Vessels were imaged at 7 T using a DTI protocol with b = 0 and 800 s/mm2 and 10 isotopically distributed directions. FA and MD were evaluated in the vessel media and compared across models. FA values measured in native (p < 0.0001), fixed native (p < 0.0001) and collagen degraded (p = 0.0018, p = 0.0016, respectively) were significantly higher than those in elastin degraded and decellularised arteries. Native and fixed native had significantly lower MD values than elastin degraded (p < 0.0001) and decellularised tissue (p = 0.0032, p = 0.0003, respectively). Significantly lower MD was measured in collagen degraded compared with the elastin degraded model (p = 0.0001). Tractography yielded helically arranged tracts for native and collagen degraded vessels only. FA, MD and tractography were found to be highly sensitive to changes in the microstructural composition of arterial tissue, specifically pointing to cell, not collagen, content as the dominant source of the measured anisotropy in the vessel wall.


Sign in / Sign up

Export Citation Format

Share Document