scholarly journals Analysis of CT morphologic features and attenuation for differentiating among transient lesions, atypical adenomatous hyperplasia, adenocarcinoma in situ, minimally invasive and invasive adenocarcinoma presenting as pure ground-glass nodules

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lin Qi ◽  
Ke Xue ◽  
Cheng Li ◽  
Wenjie He ◽  
Dingbiao Mao ◽  
...  

Abstract Thin-section computed tomography (TSCT) imaging biomarkers are uncertain to distinguish progressive adenocarcinoma from benign lesions in pGGNs. The purpose of this study was to evaluate the usefulness of TSCT characteristics for differentiating among transient (TRA) lesions, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) presenting as pure ground-glass nodules (pGGNs). Between January 2016 and January 2018, 255 pGGNs, including 64 TRA, 22 AAH, 37 AIS, 108 MIA and 24 IAC cases, were reviewed on TSCT images. Differences in TSCT characteristics were compared among these five subtypes of pGGNs. Logistic analysis was performed to identify significant factors for predicting MIA and IAC. Progressive pGGNs were more likely to be round or oval in shape, with clear margins, air bronchograms, vascular and pleural changes, creep growth, and bubble-like lucency than were non-progressive pGGNs. The optimal cut-off values of the maximum diameter for differentiating non-progressive from progressive pGGNs and IAC from non-IAC were 6.5 mm and 11.5 mm, respectively. For the prediction of IAC vs. non-IAC and non-progressive vs. progressive adenocarcinoma, the areas under the receiver operating characteristics curves were 0.865 and 0.783 for maximum diameter and 0.784 and 0.722 for maximum CT attenuation, respectively. The optimal cut-off values of maximum CT attenuation were −532 HU and −574 HU for differentiating non-progressive from progressive pGGNs and IAC from non-IAC, respectively. Maximum diameter, maximum attenuation and morphological characteristics could help distinguish TRA lesions from MIA and IAC but not from AAH. So, CT morphologic characteristics, diameter and attenuation parameters are useful for differentiating among pGGNs of different subtypes.

2021 ◽  
Vol 11 ◽  
Author(s):  
Bin Wang ◽  
Preeti Hamal ◽  
Xue Meng ◽  
Ke Sun ◽  
Yang Yang ◽  
...  

ObjectivesWe aimed to develop a prediction model to distinguish atypical adenomatous hyperplasia (AAH) from early lung adenocarcinomas in patients with subcentimeter pulmonary ground-glass nodules (GGNs), which may help avoid aggressive surgical resection for patients with AAH.MethodsSurgically confirmed cases of AAH and lung adenocarcinomas manifesting as GGNs of less than 1 cm were retrospectively collected. A prediction model based on radiomics and clinical features identified from a training set of cases was built to differentiate AAH from lung adenocarcinomas and tested on a validation set.ResultsFour hundred and eighty-five eligible cases were included and randomly assigned to the training (n = 339) or the validation sets (n = 146). The developed radiomics prediction model showed good discrimination performance to distinguish AAH from adenocarcinomas in both the training and the validation sets, with, respectively, 84.1% and 82.2% of accuracy, and AUCs of 0.899 (95% CI: 0.867–0.931) and 0.881 (95% CI: 0.827–0.936).ConclusionThe prediction model based on radiomics and clinical features can help differentiate AAH from adenocarcinomas manifesting as subcentimeter GGNs and may prevent aggressive resection for AAH patients, while reserving this treatment for adenocarcinomas.


Sign in / Sign up

Export Citation Format

Share Document