scholarly journals Versatile format of minichaperone-based protein fusion system

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maria S. Yurkova ◽  
Olga A. Sharapova ◽  
Vladimir A. Zenin ◽  
Alexey N. Fedorov

Abstract Hydrophobic recombinant proteins often tend to aggregate upon expression into inclusion bodies and are difficult to refold. Producing them in soluble forms constitutes a common bottleneck problem. A fusion system for production of insoluble hydrophobic proteins in soluble stable forms with thermophilic minichaperone, GroEL apical domain (GrAD) as a carrier, has recently been developed. To provide the utmost flexibility of the system for interactions between the carrier and various target protein moieties a strategy of making permutated protein variants by gene engineering has been applied: the original N- and C-termini of the minichaperone were linked together by a polypeptide linker and new N- and C-termini were made at desired parts of the protein surface. Two permutated GrAD forms were created and analyzed. Constructs of GrAD and both of its permutated forms fused with the initially insoluble N-terminal fragment of hepatitis C virus’ E2 protein were tested. Expressed fusions formed inclusion bodies. After denaturation, all fusions were completely renatured in stable soluble forms. A variety of permutated GrAD variants can be created. The versatile format of the system provides opportunities for choosing an optimal pair between particular target protein moiety and the best-suited original or specific permutated carrier.

2021 ◽  
Author(s):  
Supeshala Dilrukshi Sarath Nawarathnage ◽  
Sara Soleimani ◽  
Moriah H Mathis ◽  
Braydan D Bezzant ◽  
Diana T Ramírez ◽  
...  

We extend investigation into the usefulness of genetic fusion to TELSAM polymers as an effective protein crystallization strategy. We tested various numbers of the target protein fused per turn of the TELSAM helical polymer and various TELSAM–target connection strategies. We provide definitive evidence that: 1. A TELSAM–target protein fusion can crystallize more rapidly than the same target protein alone, 2. TELSAM–target protein fusions can form well-ordered, diffracting crystals using either flexible or rigid TELSAM–target linkers, 3. Well-ordered crystals can be obtained when either 2 or 6 copies of the target protein are presented per turn of the TELSAM helical polymer, 4. The TELSAM polymers themselves need not directly contact one another in the crystal lattice, and 5. Fusion to TELSAM polymer confers immense avidity to stabilize exquisitely weak inter-target protein crystal contacts. We report features of TELSAM-target protein crystals and outline future work needed to define the requirements for reliably obtaining optimal crystals of TELSAM–target protein fusions.


2019 ◽  
Vol 3 (2) ◽  
pp. 298-305 ◽  
Author(s):  
Ludmilla Dela Coletta Troiano Araujo ◽  
Daniel Ernesto Rodriguez-Fernández ◽  
Márcia Wibrantz ◽  
Susan Grace Karp ◽  
Gilberto Delinski Junior ◽  
...  

2013 ◽  
Vol 34 (18) ◽  
pp. 2754-2759 ◽  
Author(s):  
Carlos E. Espinosa-de la Garza ◽  
Francisco C. Perdomo-Abúndez ◽  
Víctor R. Campos-García ◽  
Néstor O. Pérez ◽  
Luis F. Flores-Ortiz ◽  
...  

2005 ◽  
Vol 2 (1) ◽  
pp. 45-52
Author(s):  
Shi Xi-Ju ◽  
Xia Chun ◽  
Wang Ming

AbstractInterferon(IFN)-α genes were cloned from genomic DNA of Fuan and Fuzhong water buffaloes by PCR, and the PCR products were inserted into a pQE30 vector to construct recombinant expression plasmids. Sequence analysis showed that both clones were composed of 498 nucleotides, encoding a mature polypeptide with 166 amino acids (aa). They were defined as two new subtypes, with 91.6–94.2% identity at the amino acid level by comparison with eight previously published bovine IFN-α subtypes. Results of SDS-PAGE and Western blotting showed that each of the recombinant proteins was expressed in inclusion bodies inEscherichia coliwith molecular weight of 20 kDa and the recombinant proteins were 25% of the whole proteins. Inclusion bodies were denatured and renatured with urea and the antiviral activities of the recombinant buffalo IFN-α (rBuIFN-α) were 105U/mg and 106U/mg in CEF/VSV and MDBK/VSV cell lines, respectively. Additionally, rBuIFN-α had good effects against challenge byinfectious bovine rhinotracheitis virus. The rBuIFN-α are potential biological agents for the prevention and treatment of various kinds of bovine viral disease.


2020 ◽  
Vol 27 ◽  
Author(s):  
Mohammad Sadegh Hashemzadeh ◽  
Mozafar Mohammadi ◽  
Hadi Esmaeili Gouvarchin Ghaleh ◽  
Mojtaba Sharti ◽  
Ali Choopani ◽  
...  

: Escherichia coli has been most widely used for production of the recombinant proteins. Over-expression of the recombinant proteins is the mainspring of the inclusion bodies formation. The refolding of these proteins into bioactive forms is cumbersome and partly time-consuming. In the present study, we reviewed and discussed most issues regarding the recovery of "classical inclusion bodies" by focusing on our previous experiences. Performing proper methods of expression, solubilization, refolding and final purification of these proteins, would make it possible to recover higher amounts of pro-teins into the native form with appropriate conformation. Generally, providing mild conditions and proper refolding buffers, would lead to recover more than 40% of inclusion bodies into bioactive and native conformation.


Sign in / Sign up

Export Citation Format

Share Document