Expression, solubilization, refolding and final purification of recombinant proteins as expressed in the form of "classical inclusion bodies" in E. coli

2020 ◽  
Vol 27 ◽  
Author(s):  
Mohammad Sadegh Hashemzadeh ◽  
Mozafar Mohammadi ◽  
Hadi Esmaeili Gouvarchin Ghaleh ◽  
Mojtaba Sharti ◽  
Ali Choopani ◽  
...  

: Escherichia coli has been most widely used for production of the recombinant proteins. Over-expression of the recombinant proteins is the mainspring of the inclusion bodies formation. The refolding of these proteins into bioactive forms is cumbersome and partly time-consuming. In the present study, we reviewed and discussed most issues regarding the recovery of "classical inclusion bodies" by focusing on our previous experiences. Performing proper methods of expression, solubilization, refolding and final purification of these proteins, would make it possible to recover higher amounts of pro-teins into the native form with appropriate conformation. Generally, providing mild conditions and proper refolding buffers, would lead to recover more than 40% of inclusion bodies into bioactive and native conformation.

Author(s):  
Arshpreet Bhatwa ◽  
Weijun Wang ◽  
Yousef I. Hassan ◽  
Nadine Abraham ◽  
Xiu-Zhen Li ◽  
...  

Recombinant proteins are becoming increasingly important for industrial applications, where Escherichia coli is the most widely used bacterial host for their production. However, the formation of inclusion bodies is a frequently encountered challenge for producing soluble and functional recombinant proteins. To overcome this hurdle, different strategies have been developed through adjusting growth conditions, engineering host strains of E. coli, altering expression vectors, and modifying the proteins of interest. These approaches will be comprehensively highlighted with some of the new developments in this review. Additionally, the unique features of protein inclusion bodies, the mechanism and influencing factors of their formation, and their potential advantages will also be discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Mona Alibolandi ◽  
Hasan Mirzahoseini

Escherichia coliis one of the most widely used hosts for the production of recombinant proteins but insoluble expression of heterologous proteins is a major bottleneck in production of recombinant proteins inE. coli.In vitrorefolding of inclusion body into proteins with native conformations is a solution for this problem but there is a need for optimization of condition for each protein specifically. Several approaches have been described for in vitro refolding; most of them involve the use of additives for assisting correct folding. Cosolutes play a major role in refolding process and can be classified according to their function as aggregation suppressors and folding enhancers. This paper presents a review of additives that are used in refolding process of insoluble recombinant proteins in small scale and industrial processes.


2020 ◽  
Vol 14 (4) ◽  
pp. 269-282
Author(s):  
Sadra S. Tehrani ◽  
Golnaz Goodarzi ◽  
Mohsen Naghizadeh ◽  
Seyyed H. Khatami ◽  
Ahmad Movahedpour ◽  
...  

Background: Granulocyte colony-stimulating factor (G-CSF) expressed in engineered Escherichia coli (E. coli) as a recombinant protein is utilized as an adjunct to chemotherapy for improving neutropenia. Recombinant proteins overexpression may lead to the creation of inclusion bodies whose recovery is a tedious and costly process. To overcome the problem of inclusion bodies, secretory production might be used. To achieve a mature secretory protein product, suitable signal peptide (SP) selection is a vital step. Objective: In the present study, we aimed at in silico evaluation of proper SPs for secretory production of recombinant G-CSF in E. coli. Methods: Signal peptide website and UniProt were used to collect the SPs and G-CSF sequences. Then, SignalP were utilized in order to predict the SPs and location of their cleavage site. Physicochemical features and solubility were investigated by ProtParam and Protein-sol tools. Fusion proteins sub-cellular localization was predicted by ProtCompB. Results: LPP, ELBP, TSH, HST3, ELBH, AIDA and PET were excluded according to SignalP. The highest aliphatic index belonged to OMPC, TORT and THIB and PPA. Also, the highest GRAVY belonged to OMPC, ELAP, TORT, BLAT, THIB, and PSPE. Furthermore, G-CSF fused with all SPs were predicted as soluble fusion proteins except three SPs. Finally, we found OMPT, OMPF, PHOE, LAMB, SAT, and OMPP can translocate G-CSF into extracellular space. Conclusion: Six SPs were suitable for translocating G-CSF into the extracellular media. Although growing data indicate that the bioinformatics approaches can improve the precision and accuracy of studies, further experimental investigations and recent patents explaining several inventions associated to the clinical aspects of SPs for secretory production of recombinant GCSF in E. coli are required for final validation.


2020 ◽  
Vol 367 (22) ◽  
Author(s):  
Chris Coward ◽  
Gopujara Dharmalingham ◽  
Omar Abdulle ◽  
Tim Avis ◽  
Stephan Beisken ◽  
...  

ABSTRACT The use of bacterial transposon mutant libraries in phenotypic screens is a well-established technique for determining which genes are essential or advantageous for growth in conditions of interest. Standard, inactivating, transposon libraries cannot give direct information about genes whose over-expression gives a selective advantage. We report the development of a system wherein outward-oriented promoters are included in mini-transposons, generation of transposon mutant libraries in Escherichia coli and Pseudomonas aeruginosa and their use to probe genes important for growth under selection with the antimicrobial fosfomycin, and a recently-developed leucyl-tRNA synthase inhibitor. In addition to the identification of known mechanisms of action and resistance, we identify the carbon–phosphorous lyase complex as a potential resistance liability for fosfomycin in E. coli and P. aeruginosa. The use of this technology can facilitate the development of novel mechanism-of-action antimicrobials that are urgently required to combat the increasing threat worldwide from antimicrobial-resistant pathogenic bacteria.


2005 ◽  
Vol 37 (4) ◽  
pp. 265-269 ◽  
Author(s):  
Xi-Qiang Zhu ◽  
Su-Xia Li ◽  
Hua-Jun He ◽  
Qin-Sheng Yuan

Abstract The EC-SOD cDNA was cloned by polymerase chain reaction (PCR) and inserted into the Escherichia coli expression plasmid pET-28a(+) and transformed into E. coli BL21(DE3). The corresponding protein that was overexpressed as a recombinant His6-tagged EC-SOD was present in the form of inactive inclusion bodies. This structure was first solubilized under denaturant conditions (8.0 M urea). Then, after a capture step using immobilized metal affinity chromatography (IMAC), a gradual refolding of the protein was performed on-column using a linear urea gradient from 8.0 M to 1.5 M in the presence of glutathione (GSH) and oxidized glutathione (GSSG). The mass ratio of GSH to GSSG was 4:1. The purified enzyme was active, showing that at least part of the protein was properly refolded. The protein was made concentrated by ultrafiltration, and then isolated using Sephacryl S-200 HR. There were two protein peaks in the A280 profile. Based on the results of electrophoresis, we concluded that the two fractions were formed by protein subunits of the same mass, and in the fraction where the molecular weight was higher, the dimer was formed through the disulfide bond between subunits. Activities were detected in the two fractions, but the activity of the dimer was much higher than that of the single monomer. The special activities of the two fractions were found to be 3475 U/mg protein and 510 U/mg protein, respectively.


Author(s):  
Nguyen Thi My Trinh ◽  
Tran Linh Thuoc ◽  
Dang Thi Phuong Thao

Background: The recombinant human granulocyte colony stimulating factor con-jugated with polyethylene glycol (PEGylated GCSF) has currently been used as an efficient drug for the treatment of neutropenia caused by chemotherapy due to its long circulating half-life. Previous studies showed that Granulocyte Colony Stimula-ting Factor (GCSF) could be expressed as non-classical Inclusion Bodies (ncIBs), which contained likely correctly folded GCSF inside at low temperature. Therefore, in this study, a simple process was developed to produce PEGylated GCSF from ncIBs. Methods: BL21 (DE3)/pET-GCSF cells were cultured in the LiFlus GX 1.5 L bioreactor and the expression of GCSF was induced by adding 0.5 mM IPTG. After 24 hr of fermentation, cells were collected, resuspended, and disrupted. The insoluble fraction was obtained from cell lysates and dissolved in 0.1% N-lauroylsarcosine solution. The presence and structure of dissolved GCSF were verified using SDS-PAGE, Native-PAGE, and RP-HPLC analyses. The dissolved GCSF was directly used for the con-jugation with 5 kDa PEG. The PEGylated GCSF was purified using two purification steps, including anion exchange chromatography and gel filtration chromatography. Results: PEGylated GCSF was obtained with high purity (~97%) and was finally demonstrated as a form containing one GCSF molecule and one 5 kDa PEG molecule (monoPEG-GCSF). Conclusion: These results clearly indicate that the process developed in this study might be a potential and practical approach to produce PEGylated GCSF from ncIBs expressed in Escherichia coli (E. coli).


2019 ◽  
Vol 366 (24) ◽  
Author(s):  
Yan Ge ◽  
Senlin Guo ◽  
Tao Liu ◽  
Chen Zhao ◽  
Duanhua Li ◽  
...  

ABSTRACT A nuclease from Yersinia enterocolitica subsp. palearctica (Nucyep) is a newly found thermostable nonspecific nuclease. The heat-resisting ability of this nuclease would be extremely useful in biological research or pharmaceutical production. However, the application of this nuclease is limited because of its poor yield. This research aimed to improve Nucyep productivity by producing a novel genetically engineered Escherichia coli and optimizing the production procedures. After 4 h of induction by lactose, the new genetically engineered E. coli can express a substantial amount of Nucyep in the form of inclusion bodies. The yield was approximately 0.3 g of inclusion bodies in 1 g of bacterial pellets. The inclusion bodies were extracted by sonication and solubilized in an 8 M urea buffer. Protein renaturation was successfully achieved by dilution method. Pure enzyme was obtained after subjecting the protein solution to anion exchange. The Nucyep showed its nonspecific and heat resistant properties as previously reported (Boissinot et  al. 2016). Through a quantification method, its activity was determined to be 1.3 × 10 6 Kunitz units (K.U.)/mg. These results can serve as a reference for increasing Nucyep production.


2000 ◽  
Vol 66 (3) ◽  
pp. 884-889 ◽  
Author(s):  
Kazuyo Nishihara ◽  
Masaaki Kanemori ◽  
Hideki Yanagi ◽  
Takashi Yura

ABSTRACT To examine the effects of overexpression of trigger factor (TF) on recombinant proteins produced in Escherichia coli, we constructed plasmids that permitted controlled expression of TF alone or together with the GroEL-GroES chaperones. The following three proteins that are prone to aggregation were tested as targets: mouse endostatin, human oxygen-regulated protein ORP150, and human lysozyme. The results revealed that TF overexpression had marked effects on the production of these proteins in soluble forms, presumably through facilitating correct folding. Whereas overexpression of TF alone was sufficient to prevent aggregation of endostatin, overexpression of TF together with GroEL-GroES was more effective for ORP150 and lysozyme, suggesting that TF and GroEL-GroES play synergistic roles in vivo. Although coexpression of the DnaK-DnaJ-GrpE chaperones was also effective for endostatin and ORP150, coexpression of TF and GroEL-GroES was more effective for lysozyme. These results attest to the usefulness of the present expression plasmids for improving protein production inE. coli.


Sign in / Sign up

Export Citation Format

Share Document