scholarly journals Evaluation of Small Molecule Drug Uptake in Patient-Derived Prostate Cancer Explants by Mass Spectrometry

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shadrack M. Mutuku ◽  
Paul J. Trim ◽  
Bala K. Prabhala ◽  
Swati Irani ◽  
Kayla L. Bremert ◽  
...  

Abstract Patient-derived explant (PDE) culture of solid tumors is increasingly being applied to preclinical evaluation of novel therapeutics and for biomarker discovery. In this technique, treatments are added to culture medium and penetrate the tissue via a gelatin sponge scaffold. However, the penetration profile and final concentrations of small molecule drugs achieved have not been determined to date. Here, we determined the extent of absorption of the clinical androgen receptor antagonist, enzalutamide, into prostate PDEs, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser/desorption ionisation (MALDI) mass spectrometry imaging (MSI). In a cohort of 11 PDE tissues from eight individual patients, LC-MS/MS quantification of PDE homogenates confirmed enzalutamide (10 µM) uptake by all PDEs, which reached maximal average tissue concentration of 0.24–0.50 ng/µg protein after 48 h culture. Time dependent uptake of enzalutamide (50 µM) in PDEs was visualized using MALDI MSI over 24–48 h, with complete penetration throughout tissues evident by 6 h of culture. Drug signal intensity was not homogeneous throughout the tissues but had areas of markedly high signal that corresponded to drug target (androgen receptor)-rich epithelial regions of tissue. In conclusion, application of MS-based drug quantification and visualization in PDEs, and potentially other 3-dimensional model systems, can provide a more robust basis for experimental study design and interpretation of pharmacodynamic data.

2020 ◽  
Vol 21 (16) ◽  
pp. 5903
Author(s):  
Nicolai Bjødstrup Palstrøm ◽  
Lars Melholt Rasmussen ◽  
Hans Christian Beck

In the present study, we evaluated four small molecule affinity-based probes based on agarose-immobilized benzamidine (ABA), O-Phospho-L-Tyrosine (pTYR), 8-Amino-hexyl-cAMP (cAMP), or 8-Amino-hexyl-ATP (ATP) for their ability to remove high-abundant proteins such as serum albumin from plasma samples thereby enabling the detection of medium-to-low abundant proteins in plasma samples by mass spectrometry-based proteomics. We compared their performance with the most commonly used immunodepletion method, the Multi Affinity Removal System Human 14 (MARS14) targeting the top 14 most abundant plasma proteins and also the ProteoMiner protein equalization method by label-free quantitative liquid chromatography tandem mass spectrometry (LC-MSMS) analysis. The affinity-based probes demonstrated a high reproducibility for low-abundant plasma proteins, down to picomol per mL levels, compared to the Multi Affinity Removal System (MARS) 14 and the Proteominer methods, and also demonstrated superior removal of the majority of the high-abundant plasma proteins. The ABA-based affinity probe and the Proteominer protein equalization method performed better compared to all other methods in terms of the number of analyzed proteins. All the tested methods were highly reproducible for both high-abundant plasma proteins and low-abundant proteins as measured by correlation analyses of six replicate experiments. In conclusion, our results demonstrated that small-molecule based affinity-based probes are excellent alternatives to the commonly used immune-depletion methods for proteomic biomarker discovery studies in plasma. Data are available via ProteomeXchange with identifier PXD020727.


2010 ◽  
Vol 30 (1) ◽  
pp. 101-120 ◽  
Author(s):  
Jeroen J.A. van Kampen ◽  
Peter C. Burgers ◽  
Ronald de Groot ◽  
Rob A. Gruters ◽  
Theo M. Luider

2016 ◽  
Author(s):  
Suzan Stelloo ◽  
Ekaterina Nevedomskaya ◽  
Karianne Schuurman ◽  
Lodewyk FA Wessels ◽  
Rui Henrique ◽  
...  

2018 ◽  
Author(s):  
Shazia Khan ◽  
Diego F Cobice ◽  
Dawn EW Livingstone ◽  
C Logan Mackay ◽  
Scott P Webster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document