cancer biomarker
Recently Published Documents


TOTAL DOCUMENTS

1222
(FIVE YEARS 327)

H-INDEX

75
(FIVE YEARS 13)

Talanta ◽  
2022 ◽  
Vol 236 ◽  
pp. 122830
Author(s):  
Xuemei Fan ◽  
Shumin Wang ◽  
Hugang Liu ◽  
Zhejian Li ◽  
Qiangqiang Sun ◽  
...  
Keyword(s):  

2021 ◽  
Vol 45 (2) ◽  
pp. 7-13
Author(s):  
Inam J Lafta ◽  
Bassam K Kudhair ◽  
Oluyinka A Iyiola ◽  
Emad A Ahmed ◽  
Tachung Chou

STAG proteins, which are part of the cohesin complex and encoded by the STAG genes, are known as Irr1/Scc3 in yeast and as SA/STAG/stromalin in mammals. There are more variants as there are alternate splice sites, maybe three open reading frames (ORFs) code for three main proteins, including: SA1 (STAG1), SA2 (STAG2) and SA3 (STAG3). The cohesin protein complex has various essential roles in eukaryotic cell biology. This study compared the expression of the STAG1 gene in four different breast cancer cell lines, including: MCF-7, T-47D, MDA-MB-468, and MDA-MB-231 and normal breast tissue. RNA was extracted from these cell lines and mRNA was converted to cDNA, and then expression of the STAG1 gene was quantified by three sets of specific primer pairs using Real Time-quantitative PCR (RT-qPCR). The findings show significantly different over-expression of STAG1 in these cancer cell lines in comparison with the normal tissue, and the cell lines were different in their expression levels. In conclusion, the STAG1 gene can be postulated as a candidate breast cancer biomarker that needs to be further evaluated in breast tumor biopsies.


2021 ◽  
Author(s):  
Mengyao Liu ◽  
Yonghong Li ◽  
Wei Xing ◽  
Yuqin Zhang ◽  
Xi Xie ◽  
...  

Abstract BackgroundEffective and accurate screening of oncological biomarkers in peripheral blood circulation plays an increasingly vital role in diagnosis and prognosis. High-sensitivity assays can effectively aid clinical decision-making and intervene in cancer in a localized status before they metastasize and become unmanageable. Meanwhile, it is equally pivotal to prevent overdiagnosis of non-life-threatening cancer by eliminating unnecessary treatment and repeated blood draws. Unfortunately, current clinical screening methodologies can hardly simultaneously attain sufficient sensitivity and specificity, especially under resource-restrained circumstances. To circumvent such limitations, particularly for cancer biomarkers from early-onset and recurrence, we aim to develop a universal plasmonic platform for clinical applications, which macroscopically amplifies multiplexed fluorescence signals in a broad spectral window readily adapts to current assay setups without sophisticated accessories or expertise at low cost. MethodsThe plasmonic substrate was chemically synthesized in situ at the solid-liquid interface by rationally screening a panel of reducing monosaccharides and tuning the redox reactions at various catalyst densities and precursor concentrations. The redox properties were studied by Benedict’s assay and electrochemistry. We systemically characterized the morphologies and optical properties of the engineered plasmonic Ag structures by scanning electron microscopy (SEM) and spectroscopy. The structure-fluorescence enhancement correlation was explicitly explained by the finite-difference time-domain (FDTD) simulation and a computational model for gap distribution. Next, we established an enhanced fluoroimmunoassay (eFIA) using a model biomarker for prostate cancer (PCa) and validated it in healthy and PCa cohorts. Prognosis was explored in patients subject to surgical and hormonal interventions following recommended PCa guidelines. ResultsThe monosaccharide-mediated redox reaction yielded a broad category of Ag structures, including sparsely dispersed nanoparticles of various sizes, semi-continuous nanoislands, and crackless continuous films. Optimal broad-spectral fluorescence enhancement from green to far-red was observed for the inhomogeneous, irregularly-shaped semi-continuous Ag nanoisland substrate (AgNIS), synthesized from a well-balanced redox reaction at a stable rate mediated by mannose. In addition, different local electric field intensity distributions in response to various incident excitations were observed at the nanoscale, elucidating the need for irregular and inhomogeneous structures. AgNIS enabled a maximized 54.7-fold macroscopically amplified fluorescence and long-lasting photostability. Point-of-care availability was fulfilled using a customized smartphone prototype with well-paired optics. The eFIA effectively detected the PCa marker in cell lines, xenograft tumors, and patient sera. The plasmonic platform rendered a diagnostic sensitivity of 86.0% and a specificity of 94.7% and capably staged high-grade PCa that the clinical gold standard test failed to stratify. Patient prognosis of surgical and hormonal interventions was non-invasively monitored following efficient medical interventions. The assay time was significantly curtailed on the plasmonic platform upon microwave irradiation. ConclusionsBy investigating the effects of monosaccharides on the seed-mediated chemical synthesis of plasmonic Ag structures, we deduced that potent multiplexed fluorescence enhancement originated from both an adequate reducing power and a steady reduction rate. Furthermore, the inhomogeneous structure with adequate medium gap distances afforded optimal multiwavelength fluorescence enhancement, thus empowering an effective eFIA for PCa. The clinically validated diagnostic and prognostic features, along with the low sample volume, point-of-care feasibility with a smartphone, and microwave-shortened assay time, warrant its potential clinical translation for widespread cancer biomarker analysis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Liya Wang ◽  
Lucia Unger ◽  
Hanan Sharif ◽  
Staffan Eriksson ◽  
Vinzenz Gerber ◽  
...  

Abstract Background Thymidine kinase 1 (TK1) plays a key role in the synthesis of deoxythymidine triphosphate (dTTP) and is thus important for DNA replication and cell proliferation. The expression of TK1 is highest during S-phase, and it is rapidly degraded after mitosis. In cancer cells, TK1 is upregulated, resulting in leakage of excess TK1 into the blood. Consequently, serum TK1 has been used as a diagnostic and prognostic cancer biomarker, mainly in human medicine. The aims of this work were to characterize equine TK1 and to evaluate its suitability as a serum biomarker for equine lymphoma. Results Equine TK1 was cloned, expressed in E. coli and affinity purified. The purified recombinant horse TK1 showed broad substrate specificity, phosphorylating pyrimidine deoxyribo- and ribonucleosides and, to some extent, purine deoxynucleosides, including anticancer and antiviral nucleoside analogues. ATP was the preferred phosphate donor. Serum TK1 activity was measured in samples collected from horses with confirmed or suspected lymphoma and control horses with and without concurrent diseases. Serum TK1 activity levels were significantly higher in horses with lymphoma (p <  0.0005) and suspected lymphoma (p <  0.02) and in tumour-free groups with diverse diseases (p <  0.03) than in controls without concurrent diseases. There was a significant difference between the lymphoma group and the tumour-free group with diverse diseases (p <  0.0006). Furthermore, receiver operating characteristic analysis revealed a sensitivity of 0.86, a specificity of 0.95 and an AUC (area under the curve) of 0.92 compared to the controls without concurrent diseases, with a sensitivity of 0.97, a specificity of 0.71 and an AUC of 0.88 when compared with the tumour-free group with diverse diseases. Conclusion Equine TK1 showed high specific activity and broader substrate specificity than human TK1. Anticancer and antiviral thymidine analogues were efficiently phosphorylated by horse TK1, suggesting that these analogues might be good candidates for chemotherapy in horses. Serum TK1 activity was significantly higher in horses with lymphoma than in controls. ROC analysis indicated that serum TK1 could serve as a promising cancer biomarker in horses.


Sign in / Sign up

Export Citation Format

Share Document