scholarly journals Deep Electrical Resistivity Tomography for a 3D picture of the most active sector of Campi Flegrei caldera

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Troiano ◽  
R. Isaia ◽  
M. G. Di Giuseppe ◽  
F. D. A. Tramparulo ◽  
S. Vitale

Abstract The central sector of the Campi Flegrei volcano, including the Solfatara maar and Pisciarelli fumarole field, is currently the most active area of the caldera as regards seismicity and gaseous emissions and it plays a significant role in the ongoing unrest. However, a general volcano-tectonic reconstruction of the entire sector is still missing. This work aims to depict, for the first time, the architecture of the area through the application of deep Electrical Resistivity Tomography. We reconstructed a three-dimensional resistivity model for the entire sector. Results provide useful elements to understand the present state of the system and the possible evolution of the volcanic activity and shed solid bases for any attempt to develop physical-mathematical models investigating the ongoing phenomena.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
T. Apuani ◽  
G. P. Giani ◽  
M. d’Attoli ◽  
F. Fischanger ◽  
G. Morelli ◽  
...  

The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. B231-B239 ◽  
Author(s):  
Jonathan E. Chambers ◽  
Oliver Kuras ◽  
Philip I. Meldrum ◽  
Richard D. Ogilvy ◽  
Jonathan Hollands

A former dolerite quarry and landfill site was investigated using 2D and 3D electrical resistivity tomography (ERT), with the aims of determining buried quarry geometry, mapping bedrock contamination arising from the landfill, and characterizing site geology. Resistivity data were collected from a network of intersecting survey lines using a Wenner-based array configuration. Inversion of the data was carried out using 2D and 3D regularized least-squares optimization methods with robust (L1-norm) model constraints. For this site, where high resistivity contrasts were present, robust model constraints produced a more accurate recovery of subsurface structures when compared to the use of smooth (L2-norm) constraints. Integrated 3D spatial analysis of the ERT and conventional site investigation data proved in this case a highly effective means of characterizing the landfill and its environs. The 3D resistivity model was successfully used to confirm the position of the landfill boundaries, which appeared as electrically well-defined features that corresponded extremely closely to both historic maps and intrusive site investigation data. A potential zone of leachate migration from the landfill was identified from the electrical models; the location of this zone was consistent with the predicted direction of groundwater flow across the site. Unquarried areas of a dolerite sill were imaged as a resistive sheet-like feature, while the fault zone appeared in the 2D resistivity model as a dipping structure defined by contrasting bedrock resistivities.


Geomorphology ◽  
2012 ◽  
Vol 177-178 ◽  
pp. 17-25 ◽  
Author(s):  
J.E. Chambers ◽  
P.B. Wilkinson ◽  
D. Wardrop ◽  
A. Hameed ◽  
I. Hill ◽  
...  

1998 ◽  
Vol 44 (147) ◽  
pp. 429-435 ◽  
Author(s):  
Bryn Hubbard ◽  
Andrew Binley ◽  
Lee Slater ◽  
Roy Middleton ◽  
Bernd Kulessa

AbstractBorehole-based electrical resistivity surveys have the capacity to enhance our understanding of the structure of englacial drainage pathways in temperate ice. We summarize inter-borehole electrical resistivity tomography (ERT) as currently used in hydrogeological investigations and as adapted for imaging englacial drainage. ERT connections were successfully made for the first time in glacier ice, following artificial mineralization of borehole waters at Haut Glacier d’Arolla, Switzerland. Here, two types of electrical connection were made between boreholes spaced up to 10 m apart and drilled to depths of between 20 and 60 m. Most tests indicated the presence of resistively homogeneous ice with uniform bulk resistivities of ~108- 109Ω m. However, ERT was also successfully used to identify and characterize a hydraulically conductive englacial fracture that intersected two boreholes at a depth of ~ 13 m below the glacier surface. The presence of this connecting void was suggested by drilling records and verified by dual borehole-impulse testing. The reconstructed tomogram for these boreholes is characterized by a background ice-resistivity field of ~109Ω m that is disrupted at a depth of ~13 m by a sharp, sub-horizontal low-resistivity zone (~104Ω m). Inter-borehole ERT, therefore, has the capacity to image both uniform and fractured temperate glacier ice.


1998 ◽  
Vol 44 (147) ◽  
pp. 429-435 ◽  
Author(s):  
Bryn Hubbard ◽  
Andrew Binley ◽  
Lee Slater ◽  
Roy Middleton ◽  
Bernd Kulessa

AbstractBorehole-based electrical resistivity surveys have the capacity to enhance our understanding of the structure of englacial drainage pathways in temperate ice. We summarize inter-borehole electrical resistivity tomography (ERT) as currently used in hydrogeological investigations and as adapted for imaging englacial drainage. ERT connections were successfully made for the first time in glacier ice, following artificial mineralization of borehole waters at Haut Glacier d’Arolla, Switzerland. Here, two types of electrical connection were made between boreholes spaced up to 10 m apart and drilled to depths of between 20 and 60 m. Most tests indicated the presence of resistively homogeneous ice with uniform bulk resistivities of ~108 - 109 Ω m. However, ERT was also successfully used to identify and characterize a hydraulically conductive englacial fracture that intersected two boreholes at a depth of ~ 13 m below the glacier surface. The presence of this connecting void was suggested by drilling records and verified by dual borehole-impulse testing. The reconstructed tomogram for these boreholes is characterized by a background ice-resistivity field of ~109 Ω m that is disrupted at a depth of ~13 m by a sharp, sub-horizontal low-resistivity zone (~10 4 Ω m). Inter-borehole ERT, therefore, has the capacity to image both uniform and fractured temperate glacier ice.


2008 ◽  
Vol 35 (10) ◽  
pp. 1047 ◽  
Author(s):  
Terenzio Zenone ◽  
Gianfranco Morelli ◽  
Maurizio Teobaldelli ◽  
Federico Fischanger ◽  
Marco Matteucci ◽  
...  

In this study, we assess the possibility of using ground penetrating radar (GPR) and electrical resistivity tomography (ERT) as indirect non-destructive techniques for root detection. Two experimental sites were investigated: a poplar plantation [mean height of plants 25.7 m, diameter at breast height (dbh) 33 cm] and a pinewood forest mainly composed of Pinus pinea L. and Pinus pinaster Ait. (mean height 17 m, dbh 29 cm). GPR measures were taken using antennas of 900 and 1500 MHz applied in square and circular grids. ERT was previously tested along 2-D lines, compared with GPR sections and direct observation of the roots, and then using a complete 3-D acquisition technique. Three-dimensional reconstructions using grids of electrodes centred and evenly spaced around the tree were used in all cases (poplar and pine), and repeated in different periods in the pine forest (April, June and September) to investigate the influence of water saturation on the results obtainable. The investigated roots systems were entirely excavated using AIR-SPADE Series 2000. In order to acquire morphological information on the root system, to be compared with the GPR and ERT, poplar and pine roots were scanned using a portable on ground scanning LIDAR. In test sections analysed around the poplar trees, GPR with a high frequency antenna proved to be able to detect roots with very small diameters and different angles, with the geometry of survey lines ruling the intensity of individual reflectors. The comparison between 3-D images of the extracted roots obtained with a laser scan data point cloud and the GPR profile proved the potential of high density 3-D GPR in mapping the entire system in unsaturated soil, with a preference for sandy and silty terrain, with problems arising when clay is predominant. Clutter produced by gravel and pebbles, mixed with the presence of roots, can also be sources of noise for the GPR signals. The work performed on the pine trees shows that the shape, distribution and volume of roots system, can be coupled to the 3-D electrical resistivity variation of the soil model map. Geophysical surveys can be a useful approach to root investigation in describing both the shape and behaviour of the roots in the subsoil.


Sign in / Sign up

Export Citation Format

Share Document