scholarly journals High-frequency oscillations in scalp EEG mirror seizure frequency in pediatric focal epilepsy

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ece Boran ◽  
Johannes Sarnthein ◽  
Niklaus Krayenbühl ◽  
Georgia Ramantani ◽  
Tommaso Fedele

Abstract High-frequency oscillations (HFO) are promising EEG biomarkers of epileptogenicity. While the evidence supporting their significance derives mainly from invasive recordings, recent studies have extended these observations to HFO recorded in the widely accessible scalp EEG. Here, we investigated whether scalp HFO in drug-resistant focal epilepsy correspond to epilepsy severity and how they are affected by surgical therapy. In eleven children with drug-resistant focal epilepsy that underwent epilepsy surgery, we prospectively recorded pre- and postsurgical scalp EEG with a custom-made low-noise amplifier (LNA). In four of these children, we also recorded intraoperative electrocorticography (ECoG). To detect clinically relevant HFO, we applied a previously validated automated detector. Scalp HFO rates showed a significant positive correlation with seizure frequency (R2 = 0.80, p < 0.001). Overall, scalp HFO rates were higher in patients with active epilepsy (19 recordings, p = 0.0066, PPV = 86%, NPV = 80%, accuracy = 84% CI [62% 94%]) and decreased following successful epilepsy surgery. The location of the highest HFO rates in scalp EEG matched the location of the highest HFO rates in ECoG. This study is the first step towards using non-invasively recorded scalp HFO to monitor disease severity in patients affected by epilepsy.

2021 ◽  
Author(s):  
Karla Burelo ◽  
Georgia Ramantani ◽  
Giacomo Indiveri ◽  
Johannes Sarnthein

Abstract Background: Interictal High Frequency Oscillations (HFO) are measurable in scalp EEG. This has aroused interest in investigating their potential as biomarkers of epileptogenesis, seizure propensity, disease severity, and treatment response. The demand for therapy monitoring in epilepsy has kindled interest in compact wearable electronic devices for long- term EEG recording. Spiking neural networks (SNN) have been shown to be optimal architectures for being embedded in compact low-power signal processing hardware. Methods: We analyzed 20 scalp EEG recordings from 11 patients with pediatric focal lesional epilepsy. We designed a custom SNN to detect events of interest (EoI) in the 80-250 Hz ripple band and reject artifacts in the 500-900 Hz band. Results: We identified the optimal SNN parameters to automatically detect EoI and reject artifacts. The occurrence of HFO thus detected was associated with active epilepsy with 80% accuracy. The HFO rate mirrored the decrease in seizure frequency in 8 patients (p = 0.0047). Overall, the HFO rate correlated with seizure frequency (rho = 0.83, p < 0.0001, Spearman’s correlation).Conclusions: The fully automated SNN detected clinically relevant HFO in the scalp EEG. This is a further step towards non-invasive epilepsy monitoring with a low-power wearable device.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ece Boran ◽  
Johannes Sarnthein ◽  
Niklaus Krayenbühl ◽  
Georgia Ramantani ◽  
Tommaso Fedele

Epilepsia ◽  
2013 ◽  
Vol 54 (5) ◽  
pp. 848-857 ◽  
Author(s):  
Claire Haegelen ◽  
Piero Perucca ◽  
Claude-Edouard Châtillon ◽  
Luciana Andrade-Valença ◽  
Rina Zelmann ◽  
...  

2009 ◽  
Vol 85 (2-3) ◽  
pp. 287-292 ◽  
Author(s):  
Maeike Zijlmans ◽  
Julia Jacobs ◽  
Rina Zelmann ◽  
François Dubeau ◽  
Jean Gotman

Epilepsia ◽  
2021 ◽  
Author(s):  
Nicole E. C. Klink ◽  
Willemiek J. E. M. Zweiphenning ◽  
Cyrille H. Ferrier ◽  
Peter H. Gosselaar ◽  
Kai J. Miller ◽  
...  

2012 ◽  
Vol 123 (1) ◽  
pp. 100-105 ◽  
Author(s):  
Luciana Andrade-Valença ◽  
Francesco Mari ◽  
Julia Jacobs ◽  
Maeike Zijlmans ◽  
André Olivier ◽  
...  

Seizure ◽  
2011 ◽  
Vol 20 (7) ◽  
pp. 580-582 ◽  
Author(s):  
Mar Carreño ◽  
Juan Luis Becerra ◽  
Joaquín Castillo ◽  
Iratxe Maestro ◽  
Antonio Donaire ◽  
...  

Epilepsia ◽  
2019 ◽  
Vol 60 (8) ◽  
Author(s):  
Francesca Conte ◽  
Wim Van Paesschen ◽  
Benjamin Legros ◽  
Chantal Depondt

Sign in / Sign up

Export Citation Format

Share Document