scholarly journals Mitochondrial Unfolded Protein Response to Microgravity Stress in Nematode Caenorhabditis elegans

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Peidang Liu ◽  
Dan Li ◽  
Wenjie Li ◽  
Dayong Wang

Abstract Caenorhabditis elegans is useful for assessing biological effects of spaceflight and simulated microgravity. The molecular response of organisms to simulated microgravity is still largely unclear. Mitochondrial unfolded protein response (mt UPR) mediates a protective response against toxicity from environmental exposure in nematodes. Using HSP-6 and HSP-60 as markers of mt UPR, we observed a significant activation of mt UPR in simulated microgravity exposed nematodes. The increase in HSP-6 and HSP-60 expression mediated a protective response against toxicity of simulated microgravity. In simulated microgravity treated nematodes, mitochondria-localized ATP-binding cassette protein HAF-1 and homeodomain-containing transcriptional factor DVE-1 regulated the mt UPR activation. In the intestine, a signaling cascade of HAF-1/DVE-1-HSP-6/60 was required for control of toxicity of simulated microgravity. Therefore, our data suggested the important role of mt UPR activation against the toxicity of simulated microgravity in organisms.

Aging Cell ◽  
2018 ◽  
Vol 17 (6) ◽  
pp. e12830 ◽  
Author(s):  
Mehrnaz Shamalnasab ◽  
Simon-Pierre Gravel ◽  
Julie St-Pierre ◽  
Lionel Breton ◽  
Sibylle Jäger ◽  
...  

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Christopher F. Bennett ◽  
Helen Vander Wende ◽  
Marissa Simko ◽  
Shannon Klum ◽  
Sarah Barfield ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0159989 ◽  
Author(s):  
Salvador Peña ◽  
Teresa Sherman ◽  
Paul S. Brookes ◽  
Keith Nehrke

Genetics ◽  
2019 ◽  
Vol 214 (2) ◽  
pp. 409-418 ◽  
Author(s):  
Sungjin Kim ◽  
Derek Sieburth

The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved adaptive response that functions to maintain mitochondrial homeostasis following mitochondrial damage. In Caenorhabditis elegans, the nervous system plays a central role in responding to mitochondrial stress by releasing endocrine signals that act upon distal tissues to activate the UPRmt. The mechanisms by which mitochondrial stress is sensed by neurons and transmitted to distal tissues are not fully understood. Here, we identify a role for the conserved follicle-stimulating hormone G protein-coupled receptor, FSHR-1, in promoting UPRmt activation. Genetic deficiency of fshr-1 severely attenuates UPRmt activation and organism-wide survival in response to mitochondrial stress. FSHR-1 functions in a common genetic pathway with SPHK-1/sphingosine kinase to promote UPRmt activation, and FSHR-1 regulates the mitochondrial association of SPHK-1 in the intestine. Through tissue-specific rescue assays, we show that FSHR-1 functions in neurons to activate the UPRmt, to promote mitochondrial association of SPHK-1 in the intestine, and to promote organism-wide survival in response to mitochondrial stress. We propose that FSHR-1 functions cell nonautonomously in neurons to activate UPRmt upstream of SPHK-1 signaling in the intestine.


2020 ◽  
Vol 18 (7) ◽  
pp. 613-623 ◽  
Author(s):  
Huidan Weng ◽  
Yihong Ma ◽  
Lina Chen ◽  
Guoen Cai ◽  
Zhiting Chen ◽  
...  

Mitochondrial damage is involved in many pathophysiological processes, such as tumor development, metabolism, and neurodegenerative diseases. The mitochondrial unfolded protein response (mtUPR) is the first stress-protective response initiated by mitochondrial damage, and it repairs or clears misfolded proteins to alleviate this damage. Studies have confirmed that the sirtuin family is essential for the mitochondrial stress response; in particular, SIRT1, SIRT3, and SIRT7 participate in the mtUPR in different axes. This article summarizes the associations of sirtuins with the mtUPR as well as specific molecular targets related to the mtUPR in different disease models, which will provide new inspiration for studies on mitochondrial stress, mitochondrial function protection, and mitochondria-related diseases, such as neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document