scholarly journals Age-related decrease in collagen proton fraction in tibial tendons estimated by magnetization transfer modeling of ultrashort echo time magnetic resonance imaging (UTE-MRI)

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Saeed Jerban ◽  
Yajun Ma ◽  
Behnam Namiranian ◽  
Aria Ashir ◽  
Hoda Shirazian ◽  
...  

AbstractClinical magnetic resonance imaging (MRI) sequences are not often capable of directly visualizing tendons. Ultrashort echo time (UTE) MRI can acquire high signal from tendons thus enabling quantitative assessments. Magnetization transfer (MT) modeling combined with UTE-MRI—UTE-MT-modeling—can indirectly assess macromolecular protons in the tendon. This study aimed to determine if UTE-MT-modeling is a quantitative technique sensitive to the age-related changes of tendons. The legs of 26 young healthy (29 ± 6 years old) and 22 elderly (75 ± 8 years old) female subjects were imaged using UTE sequences on a 3T MRI scanner. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. T1 and UTE-MT-modeling were performed on anterior tibialis tendons (ATT) and posterior tibialis tendons (PTT) as two representative human leg tendons. A series of MT pulse saturation powers (500–1500°) and frequency offsets (2–50 kHz) were used to measure the macromolecular fraction (MMF) and macromolecular T2 (T2MM). All measurements were repeated by three independent readers for a reproducibility study. MMF demonstrated significantly lower values on average in the elderly cohort compared with the younger cohort for both ATT (decreased by 16.8%, p = 0.03) and PTT (decreased by 23.0%, p < 0.01). T2MM and T1 did not show a significant nor a consistent difference between the young and elderly cohorts. For all MRI parameters, intraclass correlation coefficient (ICC) was higher than 0.98, indicating excellent consistency between measurements performed by independent readers. MMF serving as a surrogate measure for collagen content, showed a significant decrease in elderly leg tendons. This study highlighted UTE-MRI-MT techniques as a useful quantitative method to assess the impact of aging on human tendons.

2021 ◽  
pp. 028418512110438
Author(s):  
Miho Okuda ◽  
Satoshi Kobayashi ◽  
Kazu Toyooka ◽  
Rikuto Yoshimizu ◽  
Junsuke Nakase ◽  
...  

Background Ligaments and tendons are difficult to differentiate on conventional magnetic resonance imaging (MRI). Ligaments and tendons are different histologically, and tendon graft ligamentization is known to occur after anterior cruciate ligament (ACL) reconstruction. Purpose To quantify and differentiate the ultrashort echo time T2* (UTE-T2*) values of normal knee ligaments and tendons using a 1.5-T MRI scanner. Material and Methods The right knees of 12 healthy volunteers (6 men, 6 women; mean age = 30.8 ± 9.6 years) were scanned using a UTE-T2* sequence and the UTE-T2* values of the proximal, middle, and distal portions of the ACL, posterior cruciate ligament (PCL), and patellar tendon (PT) were evaluated. Two doctors manually drew the regions of interest four times and intra- and inter-observer reliability were evaluated by intraclass correlation coefficients. Results The UTE-T2* values of ACL at the proximal, middle, distal, and mean were 12.0 ± 2.3, 11.3 ± 2.3, 12.3 ± 2.6, and 11.9 ± 2.4 ms, respectively. The UTE-T2* values of the PCL at each site were 6.9 ± 1.5, 9.0 ± 1.8, 8.8 ± 2.4, and 8.3 ± 2.1 ms, respectively. The UTE-T2* values of the PT at each site were 7.1 ± 1.7, 4.3 ± 1.7, 4.3 ± 1.8, and 5.2 ± 2.1 ms, respectively. Both intra- and inter-observer reliability showed high agreement rates. There were significant differences among the ACL mean, PCL mean, and PT mean, with a P value <0.01 in all cases. Conclusion This study confirms that UTE-T2* mapping can quantify the ACL, PCL, and PT, and tendons and ligaments can be differentiated using the UTE-T2* values in normal volunteer knee joints.


2018 ◽  
Vol 49 ◽  
pp. 4-9 ◽  
Author(s):  
Bimin Chen ◽  
Yinghua Zhao ◽  
Xin Cheng ◽  
Yajun Ma ◽  
Eric Y. Chang ◽  
...  

2020 ◽  
Vol 33 (10) ◽  
Author(s):  
Ya‐Jun Ma ◽  
Adam C. Searleman ◽  
Hyungseok Jang ◽  
Shu‐Juan Fan ◽  
Jonathan Wong ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 1186-1203 ◽  
Author(s):  
Ya-Jun Ma ◽  
Hyungseok Jang ◽  
Eric Y. Chang ◽  
Annie Hiniker ◽  
Brian P. Head ◽  
...  

2019 ◽  
Vol 21 (6) ◽  
pp. 1003-1019 ◽  
Author(s):  
Simone Mastrogiacomo ◽  
Weiqiang Dou ◽  
John A. Jansen ◽  
X. Frank Walboomers

Abstract Magnetic resonance imaging (MRI) is a non-invasive diagnostic imaging tool based on the detection of protons into the tissues. This imaging technique is remarkable because of high spatial resolution, strong soft tissue contrast and specificity, and good depth penetration. However, MR imaging of hard tissues, such as bone and teeth, remains challenging due to low proton content in such tissues as well as to very short transverse relaxation times (T2). To overcome these issues, new MRI techniques, such as sweep imaging with Fourier transformation (SWIFT), ultrashort echo time (UTE) imaging, and zero echo time (ZTE) imaging, have been developed for hard tissues imaging with promising results reported. Within this article, MRI techniques developed for the detection of hard tissues, such as bone and dental tissues, have been reviewed. The main goal was thus to give a comprehensive overview on the corresponding (pre-) clinical applications and on the potential future directions with such techniques applied. In addition, a section dedicated to MR imaging of novel biomaterials developed for hard tissue applications was given as well.


2014 ◽  
Vol 27 (12) ◽  
pp. 1535-1541 ◽  
Author(s):  
Stanley J. Kruger ◽  
Sean B. Fain ◽  
Kevin M. Johnson ◽  
Robert V. Cadman ◽  
Scott K. Nagle

Sign in / Sign up

Export Citation Format

Share Document