scholarly journals Release of Porcine Sperm from Oviduct Cells is Stimulated by Progesterone and Requires CatSper

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sergio A. Machado ◽  
Momal Sharif ◽  
Huijing Wang ◽  
Nicolai Bovin ◽  
David J. Miller

AbstractSperm storage in the female reproductive tract after mating and before ovulation is a reproductive strategy used by many species. When insemination and ovulation are poorly synchronized, the formation and maintenance of a functional sperm reservoir improves the possibility of fertilization. In mammals, the oviduct regulates sperm functions, such as Ca2+ influx and processes associated with sperm maturation, collectively known as capacitation. A fraction of the stored sperm is released by unknown mechanisms and moves to the site of fertilization. There is an empirical association between the hormonal milieu in the oviduct and sperm detachment; therefore, we tested directly the ability of progesterone to induce sperm release from oviduct cell aggregates. Sperm were allowed to bind to oviduct cells or an immobilized oviduct glycan and then challenged with progesterone, which stimulated the release of 48% of sperm from oviduct cells or 68% of sperm from an immobilized oviduct glycan. The effect of progesterone on sperm release was specific; pregnenolone and 17α-OH-progesterone did not affect sperm release. Ca2+ influx into sperm is associated with capacitation and development of hyperactivated motility. Progesterone increased sperm intracellular Ca2+, which was abrogated by blocking the sperm–specific Ca2+ channel CatSper with NNC 055-0396. NNC 055-0396 also blocked the progesterone-induced sperm release from oviduct cells or immobilized glycan. An inhibitor of the non-genomic progesterone receptor that activates CatSper similarly blocked sperm release. This is the first report indicating that release of sperm from the sperm reservoir is induced by progesterone action through CatSper channels.

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 113-114
Author(s):  
David J Miller

Abstract Because mating is not always synchronized with ovulation, females from many species store sperm in the female reproductive tract until ovulation and fertilization. This may be done for short periods, a day or two for swine and cattle, or longer periods. Other mammals, such as some species of bats, store sperm for several months. Chickens and turkeys store sperm for 2–4 weeks and queens of some species of insects store sperm for over a decade in specialized structures. How sperm are retained, kept fertile for varying times and released is unclear. We have identified two specific carbohydrate motifs that are abundant in the porcine oviduct that bind and retain sperm in the isthmus. When immobilized, these two glycans lengthen sperm lifespan and suppress the normal increase in intracellular Ca2+ that normally accompanies capacitation. Porcine sperm can be released from oviduct cells and immobilized glycans by progesterone, perhaps of ovarian or cumulus-oocyte complex origin, which activates CatSper, a sperm-specific Ca2+ channel. Progesterone, as well as other compounds that stimulate hyperactivated motility, trigger sperm release, suggesting that hyperactivated motility is sufficient to release porcine sperm from oviduct glycans. We also have found that blocking proteasome-induced sperm protein lysis diminishes the number of sperm released from oviduct glycans. Finally, a transcriptomic approach has identified several groups of genes that are differentially regulated in both bovine and porcine oviducts from estrus animals that are storing sperm compared to oviducts from diestrus animals. This provides clues about how sperm lifespan is extended during storage.


Behaviour ◽  
2006 ◽  
Vol 143 (5) ◽  
pp. 643-658 ◽  
Author(s):  
Ludovic Arnaud ◽  
Giorgina Bernasconi ◽  
Yves Brostaux ◽  
Eric P. Meyer

AbstractIn polyandrous insects, postcopulatory sexual selection is a pervasive evolutionary force favouring male and female traits that allow control of offspring paternity. Males may influence paternity through adaptations for sperm competition, and females through adaptations facilitating cryptic female choice. Yet, the mechanisms are often complex, involving behaviour, physiology or morphology, and they are difficult to identify. In red flour beetles (Tribolium castaneum), paternity varies widely, and evidence suggests that both male and female traits influence the outcome of sperm competition. To test the role of spermathecal morphology and of sperm storage processes on the outcome of sperm competition, we mated each of 26 virgin females with two males, one of which carrying a phenotypic marker to assign offspring paternity. We manipulated the interval between mating with the first and the second male, to create different conditions of sperm storage (overlapping and non-overlapping) in the female reproductive tract. To investigate the role of sperm storage more closely, we examined the relationship between paternity and spermathecal morphology in a subset of 14 experimental females. In addition, we also characterized variation in spermathecal morphology in three different strains, wildtype, Chicago black and Reindeer. No significant influence of the intermating interval was found on the paternity of the focal male, although the direction of the difference was in the expected direction of higher last male paternity for longer intervals. Moreover, paternity was not significantly associated with spermathecal morphology, although spermathecal volume, complexity, and tubule width varied significantly and substantially among individuals in all investigated strains.


2015 ◽  
Vol 27 (1) ◽  
pp. 100
Author(s):  
C. Riou ◽  
A. Gargaros ◽  
G. Harichaux ◽  
A. Brionne ◽  
J. Gautron ◽  
...  

Because of prolonged sperm storage in their oviduct, domestic hens can produce fertile eggs for up to 3 weeks following a single AI. The oviduct secretions may have an effect on sperm survival, but its composition during fertilization is unknown. In the present study, we compared the proteomic content of uterine fluid collected from two lines of hens divergent by their duration of fertility period (DFP), which defined sperm-storage duration. The first line displays a shorter period of sperm storage (10 days, line DFP–), whereas the second displays a longer period of sperm storage (21 days, DFP+). The aim was to identify proteins or peptides that may be involved in spermatozoa survival. Uterine fluid was collected 10 h after oviposition either before (n = 5/line) or 24 h after (n = 5/line) AI. Samples were pooled by condition: DFP+ before AI, DFP+ after AI, DFP– before AI, and DFP– after AI. Bottom-up approach using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nano LC-MS/MS was performed (3 replicates). Data were matched against the NCBInr database (2014) using Mascot, and identifications were validated by the peptide and protein Prophet algorithm using Scaffold software. To determine the differences in protein expression, spectral counting and XIC quantitative methods were employed using Scaffold Q+ (P < 0.05, ratio > 2). Two proteins were up-regulated and one was down-regulated in oviductal secretion of both lines in response to AI. However, AI induced a significantly different abundance between protein content of DFP– and DFP+ fluids. A panel of 8 proteins, included one DFP+-specific protein, was more abundant in DFP+ line than in DFP–. Only one protein was less abundant in DFP+ line than in DFP–. In conclusion, the presence of sperm in the genital tract induced quantitative differences of the protein content of the uterine fluid in DFP– and DFP+ hen lines. These differences imply proteins that are known as male proteins (sperm, seminal plasma, testis). Analysis of sperm protein modifications after storage will help us to understand the functional implication of these candidates.


2015 ◽  
Vol 298 (12) ◽  
pp. 2011-2017 ◽  
Author(s):  
Yuan Le ◽  
Shaofan Chen ◽  
Lisi Hu ◽  
Linli Zhang ◽  
Shakeeb Ullah ◽  
...  

2020 ◽  
Vol 21 (12) ◽  
pp. 4437 ◽  
Author(s):  
Mateo Ruiz-Conca ◽  
Jaume Gardela ◽  
Cristina Alicia Martínez ◽  
Dominic Wright ◽  
Manel López-Bejar ◽  
...  

Mating initiates dynamic modifications of gene transcription in the female reproductive tract, preparing the female for fertilization and pregnancy. Glucocorticoid signaling is essential for the homeostasis of mammalian physiological functions. This complex glucocorticoid regulation is mediated through the glucocorticoid receptor, also known as nuclear receptor subfamily 3 group C member 1 (NR3C1/GR) and related genes, like 11β-hydroxysteroid dehydrogenases (HSD11Bs) and the FK506-binding immunophilins, FKBP5 and FKBP4. This study tested the transcriptome changes in NR3C1/GR regulation in response to natural mating and/or cervical deposition of the sperm-peak ejaculate fraction collected using the gloved-hand method (semen or only its seminal plasma), in the preovulatory pig reproductive tract (cervix to infundibulum, 24 h after mating/insemination/infusion treatments). Porcine cDNA microarrays revealed 22 NR3C1-related transcripts, and changes in gene expression were triggered by all treatments, with natural mating showing the largest differences, including NR3C1, FKBP5, FKBP4, hydroxysteroid 11-beta dehydrogenase 1 and 2 (HSD11B1, HSD11B2), and the signal transducer and activator of transcription 5A (STAT5A). Our data suggest that natural mating induces expression changes that might promote a reduction of the cortisol action in the oviductal sperm reservoir. Together with the STAT-mediated downregulation of cytokine immune actions, this reduction may prevent harmful effects by promoting tolerance towards the spermatozoa stored in the oviduct and perhaps elicit spermatozoa activation and detachment after ovulation.


Sign in / Sign up

Export Citation Format

Share Document