scholarly journals Uncoupled phytoplankton-bacterioplankton relationship by multiple drivers interacting at different temporal scales in a high-mountain Mediterranean lake

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cristina Durán-Romero ◽  
Juan Manuel Medina-Sánchez ◽  
Presentación Carrillo
2017 ◽  
Vol 8 ◽  
Author(s):  
Antonio Castellano-Hinojosa ◽  
David Correa-Galeote ◽  
Presentación Carrillo ◽  
Eulogio J. Bedmar ◽  
Juan M. Medina-Sánchez

2020 ◽  
Vol 10 (11) ◽  
pp. 1045-1051 ◽  
Author(s):  
Chandan Sarangi ◽  
Yun Qian ◽  
Karl Rittger ◽  
L. Ruby Leung ◽  
Duli Chand ◽  
...  
Keyword(s):  

2020 ◽  
Vol 6 (2) ◽  
pp. 59-69
Author(s):  
Pratima Pandey ◽  
S. Nawaz Ali ◽  
Vikram Sharma ◽  
Prashant K. Champati Ray

Thermokarst (Thaw) lakes are landforms found in topographic depressions created by thawing ground ice in permafrost zones. They play an important role in the regulation of climatic functions. These lakes are a manifestation of warming surface temperatures that accelerates the ice-rich permafrost to degrade by creating marshy hollows/ponds. In the current global warming scenario, the thermokarst lakes in the high mountain regions (Himalaya) are expected to grow further. This accelerate permafrost thawing which will affect the carbon cycle, hydrology and local ecosystems. This phenomenon has attracted huge scientific attention because it has led to a rapid mass change of glaciers in the region, including extensive changes occurring on peri-glacial environments. The most striking fact is the release of an enormous amount of greenhouse gases, including methane, carbon dioxide and nitrous oxide that is locked in these lakes. The present study delves into the thermokarst lakes in the upper reaches of Chandra Valley and Western Himalaya. The study also aims at designating the impact of their changes on the ecosystem, particularly their influence on the atmospheric greenhouse gas concentrations.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Philip Brick ◽  
Kent Woodruff

This case explores the Methow Beaver Project (MBP), an ambitious experiment to restore beaver (Castor canadensis) to a high mountain watershed in Washington State, USA. The Pacific Northwest is already experiencing weather regimes consistent with longer term climate projections, which predict longer and drier summers and stronger and wetter winter storms. Ironically, this combination makes imperative more water storage in one of the most heavily dammed regions in the nation. Although the positive role that beaver can play in watershed enhancement has been well known for decades, no project has previously attempted to re-introduce beaver on a watershed scale with a rigorous monitoring protocol designed to document improved water storage and temperature conditions needed for human uses and aquatic species. While the MBP has demonstrated that beaver can be re-introduced on a watershed scale, it has been much more difficult to scientifically demonstrate positive changes in water retention and stream temperature, given hydrologic complexity, unprecedented fire and floods, and the fact that beaver are highly mobile. This case study can help environmental studies students and natural resource policy professionals think about the broader challenges of diffuse, ecosystem services approaches to climate adaptation. Beaver-produced watershed improvements will remain difficult to quantify and verify, and thus will likely remain less attractive to water planners than conventional storage dams. But as climate conditions put additional pressure on such infrastructure, it is worth considering how beaver might be employed to augment watershed storage capacity, even if this capacity is likely to remain at least in part inscrutable.


Sign in / Sign up

Export Citation Format

Share Document