scholarly journals Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haipeng Zhang ◽  
Fangfang Xu ◽  
Jinyuan Xue ◽  
Shiyong Chen ◽  
Juanjuan Wang ◽  
...  
2011 ◽  
Vol 688 ◽  
pp. 23-30 ◽  
Author(s):  
Xing Fa Ma ◽  
Ming Jun Gao ◽  
Xiao Chun He ◽  
Guang Li

To examine the effects of morphologies of one-dimentional metal oxides on their surface properties, two typical morphologies of manganese dioxide (one is nanorod, the other is nanofiber) as a model of metal oxide were prepared with hydrothermal approach under similar conditions. The adsorption properties of Pb2+ in aqueous solution were carried out by using surface active group of MnO2 with different morphologies. The results indicated that the sorption capacities for Pb2+ were dramaticly increased via tailoring the morphology of MnO2. The products were characterized with SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction), FTIR (Fourier-Transform Infrared), atomic absorption spectrophotometer, and so on. These results illustrated that it was feasible to improve the removal efficiency of heavy metal ions dramatically in aqueous solution by tailoring the morphology of nanostructured MnO2.


2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


2021 ◽  
Vol 221 ◽  
pp. 239-251
Author(s):  
Syed Muhammad Salman ◽  
Fouzia Kamal ◽  
Muhammad Zahoor ◽  
Muhammad Wahab ◽  
Durr e Shahwar ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 37600-37609 ◽  
Author(s):  
Wentao Gan ◽  
Likun Gao ◽  
Xianxu Zhan ◽  
Jian Li

TF-MS could be used to remove heavy metal ions from an aqueous solution and be separated conveniently from the solution with the help of an external magnet.


Sign in / Sign up

Export Citation Format

Share Document