scholarly journals Investigation of a new graphene strain sensor based on surface plasmon resonance

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zenghong Ma ◽  
Zijian Chen ◽  
Jian Xu ◽  
Weiping Li ◽  
Lian Zhang ◽  
...  

Abstract The high confinement of surface plasmon polaritons in graphene nanostructures at infrared frequencies can enhance the light-matter interactions, which open up intriguing possibilities for the sensing. Strain sensors have attracted much attention due to their unique electromechanical properties. In this paper, a surface plasmon resonance based graphene strain sensor is presented. The considered sensing platform consists of arrays of graphene ribbons placed on a flexible substrate which enables efficient coupling of an electromagnetic field into localized surface plasmons. When the strain stretching is applied to the configuration, the localized surface plasmon resonance frequency sensitively shift. The strain is then detected by measuring the frequency shifts of the localized plasmon resonances. This provides a new optical method for graphene strain sensing. Our results show that the tensile direction is the key parameter for strain sensing. Besides, the sensitivity and the figure of merit were calculated to evaluate the performance of the proposed sensor. The calculated figure of merit can be up to two orders of magnitude, which could be potentially useful from a practical point of view.

2021 ◽  
pp. 2100653
Author(s):  
Gyeong‐Su Park ◽  
Kyung Suk Min ◽  
Hyuksang Kwon ◽  
Sangwoon Yoon ◽  
Sangwon Park ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5262
Author(s):  
Qilin Duan ◽  
Yineng Liu ◽  
Shanshan Chang ◽  
Huanyang Chen ◽  
Jin-hui Chen

Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.


Plasmonics ◽  
2021 ◽  
Author(s):  
Mohammad Rakibul Islam ◽  
Fahim Yasir ◽  
Md. Rakib Hossain Antor ◽  
Mahmudul Hassan Turja ◽  
Ashikur Rahman ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kohei Shimanoe ◽  
Soshi Endo ◽  
Tetsuya Matsuyama ◽  
Kenji Wada ◽  
Koichi Okamoto

AbstractLocalized surface plasmon resonance (LSPR) was performed in the deep ultraviolet (UVC) region with Al nanohemisphere structures fabricated by means of a simple method using a combination of vapor deposition, sputtering, and thermal annealing without top-down nanofabrication technology such as electron beam lithography. The LSPR in the UV region was obtained and tuned by the initial metal film thickness, annealing temperature, and dielectric spacer layer thickness. Moreover, we achieved a flexible tuning of the LSPR in a much deeper UVC region below 200 nm using a nanohemisphere on a mirror (NHoM) structure. NHoM is a structure in which a metal nanohemisphere is formed on a metal substrate that is interposed with an Al2O3 thin film layer. In the experimental validation, Al and Ga were used for the metal hemispheres. The LSPR spectrum of the NHoM structures was split into two peaks, and the peak intensities were enhanced and sharpened. The shorter branch of the LSPR peak appeared in the UVC region below 200 nm. Both the peak intensities and linewidth were flexibly tuned by the spacer thickness. This structure can contribute to new developments in the field of deep UV plasmonics.


RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 23990-23998 ◽  
Author(s):  
Gaoling Liang ◽  
Zhongjun Zhao ◽  
Yin Wei ◽  
Kunping Liu ◽  
Wenqian Hou ◽  
...  

A simple, label-free and cost-effective localized surface plasmon resonance (LSPR) immunosensing method was developed for detection of alpha-fetoprotein (AFP).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeong-Min Kim ◽  
Dae Hong Jeong ◽  
Ho-Young Lee ◽  
Jae-Hyoung Park ◽  
Seung-Ki Lee

AbstractA simple optical fiber sensor based on localized surface plasmon resonance was constructed for direct and rapid measurement of thyroglobulin (Tg). Specific tests for Tg in patients that have undergone thyroidectomy are limited because of insufficient sensitivity, complicated procedures, and in some cases, a long time to yield a result. A sensitive, fast, and simple method is necessary to relieve the psychological and physical burden of the patient. Various concentrations of Tg were measured in a microfluidic channel using an optical fiber sensor with gold nanoparticles. The sensor chip has a detection limit of 93.11 fg/mL with no specificity for other antigens. The potential applicability of the Tg sensing system was evaluated using arbitrary samples containing specific concentrations of Tg. Finally, the sensor can be employed to detect Tg in the patient’s serum, with a good correlation when compared with the commercial kit.


Sign in / Sign up

Export Citation Format

Share Document