scholarly journals Non-junctional role of Cadherin3 in cell migration and contact inhibition of locomotion via domain-dependent, opposing regulation of Rac1

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takehiko Ichikawa ◽  
Carsten Stuckenholz ◽  
Lance A. Davidson

Abstract Classical cadherins are well-known adhesion molecules responsible for physically connecting neighboring cells and signaling this cell–cell contact. Recent studies have suggested novel signaling roles for “non-junctional” cadherins (NJCads); however, the function of cadherin signaling independent of cell–cell contacts remains unknown. In this study, mesendodermal cells and tissues from gastrula stage Xenopus laevis embryos demonstrate that deletion of extracellular domains of Cadherin3 (Cdh3; formerly C-cadherin in Xenopus) disrupts contact inhibition of locomotion. In both bulk Rac1 activity assays and spatio-temporal FRET image analysis, the extracellular and cytoplasmic Cdh3 domains disrupt NJCad signaling and regulate Rac1 activity in opposing directions. Stabilization of the cytoskeleton counteracted this regulation in single cell migration assays. Our study provides novel insights into adhesion-independent signaling by Cadherin3 and its role in regulating single and collective cell migration.

2019 ◽  
Author(s):  
Takehiko Ichikawa ◽  
Carsten Stuckenholz ◽  
Lance A. Davidson

AbstractClassical cadherins are well-known primary adhesion molecules responsible for physically connecting neighboring cells and signaling the cell-cell contact. Recent studies have suggested novel signaling roles for “non-junctional” cadherins (Niessen and Gottardi, 2008; Padmanabhan et al., 2017); however, the function of cadherin signaling independent of cell-cell contacts remains unknown. In this study, we used mesendoderm cells and tissues from gastrula stage Xenopus laevis embryos to demonstrate that extracellular and cytoplasmic cadherin domains regulate Rac1 in opposing directions in the absence of cell-cell contacts. Furthermore, we found that non-junctional cadherins regulate contact inhibition of locomotion (CIL) during gastrulation through alterations in the stability of the cytoskeleton. Live FRET imaging of Rac1 activity illustrated how non-junction cadherin3 (formerly C-cadherin) spatio-temporally regulates CIL. Our study provides novel insights into adhesion-independent signaling by cadherin3 and its role in regulating single and collective cell migration in vivo.


2019 ◽  
Vol 116 (10) ◽  
pp. 4291-4296 ◽  
Author(s):  
Taihei Fujimori ◽  
Akihiko Nakajima ◽  
Nao Shimada ◽  
Satoshi Sawai

Despite their central role in multicellular organization, navigation rules that dictate cell rearrangement remain largely undefined. Contact between neighboring cells and diffusive attractant molecules are two of the major determinants of tissue-level patterning; however, in most cases, molecular and developmental complexity hinders one from decoding the exact governing rules of individual cell movement. A primordial example of tissue patterning by cell rearrangement is found in the social amoebaDictyostelium discoideumwhere the organizing center or the “tip” self-organizes as a result of sorting of differentiating prestalk and prespore cells. By employing microfluidics and microsphere-based manipulation of navigational cues at the single-cell level, here we uncovered a previously overlooked mode ofDictyosteliumcell migration that is strictly directed by cell–cell contact. The cell–cell contact signal is mediated by E-set Ig-like domain-containing heterophilic adhesion molecules TgrB1/TgrC1 that act in trans to induce plasma membrane recruitment of the SCAR complex and formation of dendritic actin networks, and the resulting cell protrusion competes with those induced by chemoattractant cAMP. Furthermore, we demonstrate that both prestalk and prespore cells can protrude toward the contact signal as well as to chemotax toward cAMP; however, when given both signals, prestalk cells orient toward the chemoattractant, whereas prespore cells choose the contact signal. These data suggest a model of cell sorting by competing juxtacrine and diffusive cues, each with potential to drive its own mode of collective cell migration.


2016 ◽  
Vol 212 (2) ◽  
pp. 199-217 ◽  
Author(s):  
Cédric Plutoni ◽  
Elsa Bazellieres ◽  
Maïlys Le Borgne-Rochet ◽  
Franck Comunale ◽  
Agusti Brugues ◽  
...  

Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell–cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/β-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through β-PIX, which is specifically recruited at cell–cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through β-PIX–mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM.


2018 ◽  
Author(s):  
Taihei Fujimori ◽  
Akihiko Nakajima ◽  
Nao Shimada ◽  
Satoshi Sawai

AbstractDespite their central role in multicellular organization, navigation rules that dictate cell rearrangement remain much to be elucidated. Contact between neighboring cells and diffusive attractant molecules are two of the major determinants of tissue-level patterning, however in most cases, molecular and developmental complexity hinders one from decoding the exact governing rules of individual cell movement. A primordial example of tissue patterning by cell rearrangement is found in the social amoeba Dictyostelium discoideum where the organizing center or the ‘tip’ self-organize as a result of sorting of differentiating prestalk and prespore cells. Due to its relatively simple and conditional multicellularity, the system provides a rare case where the process can be fully dissected into individual cell behavior. By employing microfluidics and microsphere-based manipulation of navigational cues at the single-cell level, here we uncovered a previously overlooked mode of Dictyostelium cell migration that is strictly directed by cell-cell contact. The cell-cell contact signal is mediated by E-set Ig-like domain containing heterophilic adhesion molecules TgrB1/TgrC1 that act in trans to induce plasma membrane recruitment of SCAR complex and formation of dendritic actin networks, and the resulting cell protrusion competes with those induced by chemoattractant cAMP. Furthermore, we demonstrate that both prestalk and prespore cells can protrude towards the contact signal as well as to chemotax towards cAMP, however when given both signals, prestalk cells orient towards the chemoattractant whereas prespore cells choose the contact signal. These data suggest a new model of cell sorting by competing juxtacrine and diffusive cues each with potential to drive its own mode of collective cell migration. The present findings not only resolve the long standing question of how cells sort in Dictyostelium but also cast light on the remarkable parallels in collective cell migration that evolved independently in metazoa and amoebozoa.


2019 ◽  
Author(s):  
Masayuki Hayakawa ◽  
Tetsuya Hiraiwa ◽  
Yuko Wada ◽  
Hidekazu Kuwayama ◽  
Tatsuo Shibata

AbstractBiophysical mechanisms underlying collective cell migration of eukaryotic cells have been studied extensively in recent years. One paradigm that induces cells to correlate their motions is contact inhibition of locomotion, by which cells migrating away from the contact site. Here, we report that tail-following behavior at the contact site, termed contact following locomotion (CFL), can induce a non-trivial collective behavior in migrating cells. We show the emergence of a traveling band showing polar order in a mutant Dictyostelium cell that lacks chemotactic activity. The traveling band is dynamic in the sense that it continuously assembled at the front of the band and disassembled at the back. A mutant cell lacking cell adhesion molecule TgrB1 did not show both the traveling band formation and CFL. We thus conclude that CFL is the cell-cell interaction underlying the traveling band formation. We then develop an agent-based simulation with CFL, which shows the role of CFL in the formation of traveling band. We further show that the polar order phase consists of subpopulations that exhibit characteristic transversal motions with respect to the direction of band propagation. These findings describe a novel mechanism of collective cell migration involving cell–cell interactions capable of inducing traveling band with polar order.


Sign in / Sign up

Export Citation Format

Share Document