scholarly journals Propagation of optically tunable coherent radiation in a gas of polar molecules

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Piotr Gładysz ◽  
Piotr Wcisło ◽  
Karolina Słowik

Abstract Coherent, optically dressed media composed of two-level molecular systems without inversion symmetry are considered as all-optically tunable sources of coherent radiation in the microwave domain. A theoretical model and a numerical toolbox are developed to confirm the main finding: the generation of low-frequency radiation, and the buildup and propagation dynamics of such low-frequency signals in a medium of polar molecules in a gas phase. The physical mechanism of the signal generation relies on the permanent dipole moment characterizing systems without inversion symmetry. The molecules are polarized with a DC electric field yielding a permanent electric dipole moment in the laboratory frame; the direction and magnitude of the moment depend on the molecular state. As the system is resonantly driven, the dipole moment oscillates at the Rabi frequency and, hence, generates microwave radiation. We demonstrate the tuning capability of the output signal frequency with the drive amplitude and detuning. We find that even though decoherence mechanisms such as spontaneous emission may damp the output field, a scenario based on pulsed illumination yields a coherent, pulsed output of tunable temporal width. Finally, we discuss experimental scenarios exploiting rotational levels of gaseous ensembles of heteronuclear diatomic molecules.

1990 ◽  
Vol 93 (6) ◽  
pp. 4179-4186 ◽  
Author(s):  
Charles W. Bauschlicher ◽  
Stephen R. Langhoff ◽  
Timothy C. Steimle ◽  
Jeffrey E. Shirley

1994 ◽  
Vol 366 ◽  
Author(s):  
Fouad M. Aliev

ABSTRACTWe performed dielectric spectroscopy measurements to study dynamics of collective modes of ferroelectric (FLC) and molecular motion of nematic (NLC) liquid crystals with polar molecules confined in silica macroporous and microporous glasses with average pore sizes of 1000 Å (volume fraction of pores 40%) and 100 Å (27%) respectively. For FLC the Goldstone and the soft modes are found in macropores. The rotational viscosity associated with the soft mode is about 10 times higher in pores than in the bulk. These modes are not detected in micropores although low frequency relaxation is present. The last one probably is not connected with the nature of liquid crystal but is associated with surface polarization effects typical for two component heterogeneous media. The difference between the dynamics of orientational motion of the polar molecules of NLC in confined geometries and in the bulk is qualitatively determined by the total energy Fs of the interaction between molecules and the surface of the pore wall, which is found Fs ≈ 102erg/cm2.


1983 ◽  
Vol 61 (12) ◽  
pp. 1648-1654 ◽  
Author(s):  
N. H. Rich ◽  
A. R. W. McKellar

The absorption spectrum of the ν = 1 ← 0 band of HD has been investigated at a temperature of 77 K and for densities in the range of 15 to 140 amagat. The band consists of two components: a broad collision-induced quasi continuum arising from dipoles induced during molecular collisions; and a dipole-allowed part arising from the small permanent electric dipole moment of the free HD molecule. The interference effects which occur between these two components were studied for the dipole-allowed R1(0) and R1(1) transitions. These transitions exhibited increasingly large asymmetries and changes in intensity at high density, but their behaviours were quite different from each other. The shape of each transition could be well represented by a series of Fano line profiles, and the evolution of shape and intensity with density could be accounted for by the formulation of Herman, Tipping, and Poll. However, the precise interpretation of the phase shift parameters arising in the theory is not clear.


2020 ◽  
Author(s):  
Leila Abylgazina ◽  
Irena Senkovska ◽  
Sebastian Ehrling ◽  
Volodymyr Bon ◽  
Petko Petkov ◽  
...  

The pillared layer framework DUT-8(Zn) (Zn<sub>2</sub>(2,6-ndc)<sub>2</sub>(dabco), 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane, DUT = Dresden University of Technology) is a prototypical switchable MOF, showing characteristic adsorption and desorption induced open phase (<i>op</i>) to closed phase (<i>cp</i>) transformation associated with huge changes in cell volume. We demonstrate switchability strongly depends on a framework-specific critical particle size (d<i><sub>crit</sub></i>). The solvent removal process (pore desolvation stress contracting the framework) significantly controls the <i>cp</i>/<i>op</i> ratio after desolvation and, subsequently, the adsorption induced switchability characteristics of the system. After desolvation, the dense <i>cp</i> phase of DUT-8(Zn) shows no adsorption-induced reopening and therefore is non-porous for N<sub>2</sub> at 77 K and CO<sub>2</sub> at 195 K. However, polar molecules with a higher adsorption enthalpy, such as the polar molecules such as chloromethane at 249 K and dichloromethane (DCM) at 298 K can reopen the macro-sized crystals upon adsorption. For macro-sized particles, the outer surface energy is negligible and only the type of metal (Zn, Co, Ni) controls the DCM-induced gate opening pressure. The framework stiffness increases from Zn to Ni as confirmed by DFT calculations, X-ray crystal structural analyses, and low frequency Raman spectroscopy. The partial disintegration of the Zn based node hinges produces an overall increased stabilization of<i> cp </i>vs. <i>op</i> phase shifts the critical particle size at which switchability starts to become suppressed to even lower values (d<i><sub>crit</sub></i> < 200 nm) as compared to the Ni-based system (<i>d<sub>crit</sub></i> ≈ 500 nm). Hence, the three factors affecting switchability (energetics of the empty host, (<i>E<sub>op</sub>-E<sub>cp</sub></i>) (I), particle size (II), and desolvation stress (III)) appear to be of the same order of magnitude and should be considered collectively, not individually.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012001
Author(s):  
N N Bogolyubov ◽  
A V Soldatov

Abstract A two-level quantum emitter with broken inversion symmetry driven by external semiclassical monochromatic high-frequency electromagnetic (e.g., laser) field and damped by squeezed vacuum reservoir with finite bandwidth is presented. The squeezed vacuum source is assumed to be either degenerate parametric oscillator (DPO) or a non-degenerate parametric oscillator (NDPO). It is shown that the shape of low-frequency fluorescence spectrum of the emitter can be effectively alternated by controlling the degree of the squeezed vacuum source degeneration and phase of the squeezing.


Sign in / Sign up

Export Citation Format

Share Document